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1. Home Page

Numerical Methods for Quantum Optics and Open Quantum Systems is a hands-on course
that shows you how to model and simulate open quantum systems in quantum optics with
Python and QuTiP. The notes mix concise explanations, essential equations, and runnable
code cells that work both on your computer and in Google Colab. Everything lives in a Quarto
project on GitHub and is published in HTML and PDF for easy reading and collaboration.
By the end, you will be able to set up and explore standard problems—such as photon
cavities, two-level atoms, and open-system dynamics—using tools you can reuse in research
and projects.
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2. Introduction to quantum mechanics

Quantum mechanics (QM) is the general theory to describe any microscopic phenomenon
(until now), at low and high energies, for a few and infinitely many particles.

Its structure can be broken down into three main pieces that can be considered logically
independent:

1. Classical mechanics 𝐹 = 𝑚𝑎. As remarked in the third book by Landau (Landau and
Lifshitz 1981), electrons, atoms, photons, and even subatomic particles are still de-
scribed in terms of positions and velocities, following the algebraic relations of classical
mechanics (non-relativistic or relativistic, depending). Somehow, this is the only way
we have to build a measurable representation of nature. A physical system is thus de-
fined by a set of degrees of freedom, which are quantified by vectors (non-relativistic, or
4-vectors relativistic) representing the canonical variables 𝑞, 𝑃 of a Hamiltonian system.
The Hamiltonian function 𝐻(𝑞, 𝑃 ) generates the time evolution through the Hamilton
equation (equivalent to the Euler-Lagrange equation and thus to the Newton equation).

2. Non-commuting variables. The canonical variables are non-commuting [𝑞, 𝑃 ] ≠ 0, and
thus, on top of their vectorial character, they contain more information than purely clas-
sical ones. While transforming like classical vectors, quantum variables are not vectors
representable with three real numbers, but rather matrices with complex entries. To
preserve the Hamiltonian structure of classical mechanics, they require precise commu-
tation relations, which are postulated to ensure consistency. More precisely, quantum
variables are linear operators over a Hilbert space. Vectors of the Hilbert space repre-
sent the state of the system. A system composed by many subsystem has the structure
of a tensor product of Hilbert spaces. Solving a quantum system means solving a
multi-linear algebra problem.

3. Probabilistic interpretation, Born rule, and measurement postulate. Experiments on
microscopic systems show random outcomes on single realizations. Quantum mechanics
describes thus only the probability of finding a certain number in a measurement. This
probability distribution is given by the state just before the measure, more precisely
by its modulus square. After the measurement the state is randomly projected in an
eigenstates of the measured quantity, where its eigenvalue is the measurement output.
We postulate this is the theory, because none knows what happens during the measure-
ment, but we know that is consistent with the experiments. While we cannot include
the measurement in the theory, we can include its effect as a random projection.
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Interestingly, it is very important to know well classical mechanics, and its Hamiltonian
formulation in particular, for the correct formulation of the problem. All the equations are
the same, and the basics rules for the approximations (small amplitude expansions, decoupling
of time scales, adiabatic approximations...etc) are still valid (since they are very constrained
by the algebric relations between the variables). The basics intuition about which degrees of
freedom are most important, and who contributes more or less to the dynamics are still valid.
A good knowledge of classical mechanics provides the basis to set our problem right!

Classical equations are not enough, and to solve them we need multi-linear algebra. Instead
of looking for solving sets of ordinary differential equations (ODE) like in classical mechanics,
we are left we an infinite linear system of differential equations. We loose complexity from
the linearity, but we regain it from the infinite dimension of the Hilbert space! Here we need
to introduce truncations to finite dimensions and linear algebra methods to actually solve
the equations.

The result of our calculations will be probability amplitudes and expectation values, all to be
interpreted in a probabilistic way. We will see that this probabilistic interpretation can also
enter in the equation by using stochastic calculus and so-called Monte Carlo methods.

Notice that here we did not talk about wave equation and wave-particle duality. These
concepts are still here, but hidden in the non-commutativity of the variables. Typically
quantum theory is exposed starting indeed from the Schrödinger equation and with the De-
Broglie wave-particle duality, but for our purposes is actually nicer to start from this other
formulation. This way of thinking about quantum mechanics was originally introduced by
Heisenberg (W. Heisenberg 1925, 1927; Born, Heisenberg, and Jordan 1926).

2.1. Short digression: Heisenberg’s matrix mechanics

While we often study QM from the wave-particle dualism and its Schrödinger formulation
in terms of wave equation, it is worth noticing that the original Heisenberg’s formulation (+
Born and Jordan) had exactly this form, with a specific focus on the multi-linear algebra
element. It is called matrix mechanics and, while Schrödinger formalism is quite handy
for analytical solutions, matrix mechanics is essentially the most natural way to perform
numerical computations. After 100 years, we go back to the origin!

Heisenberg took for granted that the microscopic world is still represented in term of canon-
ical variables 𝑞, 𝑃 , 𝐻(𝑞, 𝑃 ) and Hamitonian equations ̇𝑞 = 𝜕𝑃 𝐻, ̇𝑃 = −𝜕𝑞𝐻. However he
noticed that we never observe 𝑞, 𝑃 of [e.g.] an atom or an electron, but rather the light
emitted/scattered by these microscopic particles.
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Figure 2.1.: A man walking at night under the street lights of the Munich’s Englischer Garten.
Werner could determine his position only when he’s under the spot light.

In particular he knew the Balmer-Lyman-Paschen-Brackett series of the lines of the hydrogen
atom. These series say that the frequency of each emission/absorption line of the hydrogen
atom is given by the formula

𝜔 = 𝑅𝑌
ℏ ( 1

𝑛2 − 1
𝑚2 ) ,

where 𝑛, 𝑚 ∈ ℕ, 𝑅𝑌 is the Rydberg constant and ℏ is the reduced Planck constant. Each
observable frequency is determined by two integer numbers 𝜔𝑛𝑚, and it is thus natural to
place it on a two-by-two table

⎛⎜⎜⎜⎜⎜⎜
⎝

0 𝜔01 𝜔02 𝜔03 …
𝜔10 0 𝜔12 𝜔13 …
𝜔20 𝜔21 0 𝜔23 …
𝜔30 𝜔31 𝜔32 0 …

⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

Each entry represents (according to Bohr) a jump between two stable orbits, or levels. How-
ever we only observe ”transitions” between these orbits, and each single orbit is not observable
even in principle. The position, velocity and everything measurable of a microscopic particle
is then only defined during these jumps: it’s like watching someone at night under the street
lights...(Werner Heisenberg 1958).

So Heisenberg postulates that all the quantities associated to a microscopic particle must be
also given in two-by-two tables, where [e.g.] one can see the position or momentum of the

9



hydrogen’s electron only during one of these transitions (after all we can just see the emitted
light and its frequency).

𝑞 ⟼
⎛⎜⎜⎜⎜⎜⎜
⎝

0 𝑞01 𝑞02 𝑞03 …
𝑞10 0 𝑞12 𝑞13 …
𝑞20 𝑞21 0 𝑞23 …
𝑞30 𝑞31 𝑞32 0 …
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

Figure 2.2.: What we see is only tables of frequencies. If we postulate that a classical me-
chanics trajectory exists it must be linked to these tables, since they are the only
possible observable. The trajectory must be expressed as a table as well.

These tables are not only a convenient way to visualize the observations, but they are the
physical variables of the theory. We can interpret {𝑞𝑛𝑚} as a some sort of discretized version
of the classical trajectory.

How do we use these tables to make theoretical predictions? A central problem for Heisen-
berg was how to sum and multiply these quantum variables, which are not numbers, but
tables. The sum can be naturally taken as element-wise, but what about the multiplication?
Heisenberg first noticed that the amplitude of emitted light also has a table {𝑎𝑛𝑚}, and it
must follow the time evolution 𝑎𝑛𝑚 ∼ 𝑒−𝑖𝜔𝑛𝑚𝑡. Suppose we multiply two of these amplitudes,
representing transitions sharing an equal level. In that case, we get another element that
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oscillates with a frequency of the table, 𝑎𝑛𝑘𝑎−𝑖𝜔𝑛𝑘𝑡 𝑎𝑘𝑚𝑒−𝑖𝜔𝑘𝑚𝑡 = 𝑎𝑛𝑘𝑎𝑘𝑚𝑒−𝑖𝜔𝑛𝑚𝑡, because
𝜔𝑛𝑘 + 𝜔𝑘𝑚 = 𝜔𝑛 − 𝜔𝑘 + 𝜔𝑘 − 𝜔𝑚 = 𝜔𝑛𝑚 by definition. But the same is true if we sum over
all possible 𝑘. Here it is not so easy to understand how Heisenberg went on (perhaps who
know german very well could read Refs. (W. Heisenberg 1925, 1927; Born, Heisenberg, and
Jordan 1926) and figure it out directly at the source), but, under the suggestion of Born and
Jordan, they recognized that multiplication between physical variable represented as tables
can be obtained using the matrix multiplication rule (which at the time was mostly unknown),
𝑞2

𝑛𝑚 = ∑𝑘 𝑞𝑛𝑘𝑞𝑘𝑚.

Interestingly, they immediately noticed that this implies the non-commutativity [ ̂𝑞, ̂𝑃 ] ≠ 0,
which in principle seems not to be fixed (from here on we use that hat-notation ̂𝑞 to indicate
the quantum variable as a table, or in a more modern language, operator). However, they
noticed that for consistency between the ”oscillator” character of the tables (each element
𝑎𝑛𝑚 must evolve as an harmonic oscillator at the given frequency 𝜔𝑛𝑚), and the equation of
the Hamiltonian mechanics there must be a precise commutation relation between 𝑞, 𝑃 . Let’s
indeed consider that, as harmonically oscillating variables, each table element must follow

𝜕𝑡𝑞𝑛𝑚 = −𝑖𝜔𝑛𝑚𝑞𝑛𝑚 = − 𝑖
ℏ[𝐻, 𝑞]𝑛𝑚 𝜕𝑡𝑃𝑛𝑚 = −𝑖𝜔𝑛𝑚𝑃𝑛𝑚 = − 𝑖

ℏ[𝐻, 𝑃 ]𝑛𝑚.

The use of the commutator and the Hamiltonian function here is justified by Bohr’s theory,
where the frequencies are given by energy levels 𝜔𝑛𝑚 = (𝐸𝑛 −𝐸𝑚)/ℏ, and the energy is given
by the Hamiltonian, which must be a diagonal table. Assuming 𝐻 = 𝑃 2/(2𝑚) + 𝑉 (𝑞), if we
compare these equations with Hamilton’s

𝜕𝑡 ̂𝑞 = ̂𝑃/𝑚 𝜕𝑡 ̂𝑃 = −𝜕 ̂𝑞𝑉 ( ̂𝑞),

we have that
𝑃𝑛𝑚 = −𝑖𝑚 𝜔𝑛𝑚𝑞𝑛𝑚 [𝜕𝑞𝑉 (𝑞)]𝑛𝑚 = 𝑖

ℏ[𝐻, 𝑃 ]𝑛𝑚.

Using 𝑉 (𝑞) = −𝑞 we have that

[ ̂𝑞, ̂𝑃 ] = 𝑖ℏ𝟙̂.

Interestingly, the consistency between the existence of Bohr’s levels, the oscillating origin of
microscopic physical variables and Hamilton’s equations implies a linear algebra structure
that must be defined on an infinite dimensional vector space. A hint for this surprising
consequence immediately comes by noticing

T𝑟( ̂𝑞 ̂𝑃 − ̂𝑃 ̂𝑞) = T𝑟( ̂𝑞 ̂𝑃 ) − T𝑟( ̂𝑃 ̂𝑞) = T𝑟( ̂𝑞 ̂𝑃 ) − T𝑟( ̂𝑞 ̂𝑃 ) = 0 ≠ 𝑖ℏT𝑟(𝟙̂) = ∞.

In any finite-dimensional space, this commutator cannot be proportional to the identity!
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2.2. Exercise: the harmonic oscillator

Let’s consider the example reported in the excellent book of Max Born (Born, Blin-Stoyle,
and Radcliffe 1989): the harmonic oscillator.

𝐻̂ =
̂𝑃 2

2𝑚 + 𝑚𝜔2

2 ̂𝑞2,

whose Hamilton equations are given by

𝜕𝑡 ̂𝑃 = −𝑚𝜔2 ̂𝑞 𝜕𝑡 ̂𝑞 =
̂𝑃

𝑚,

giving

𝜕2
𝑡 ̂𝑞 = −𝜔2 ̂𝑞.

Following Heisenberg, this must be true for each element of the corresponding quantum table
[matrix, or operator], which, at the same time, must follow an oscillatory dynamics

𝑞𝑛𝑚(𝑡) = 𝑞𝑛𝑚(0)𝑒−𝑖𝜔𝑛𝑚𝑡.

Putting them together we find that (𝜔2
𝑛𝑚 − 𝜔)𝑞𝑛𝑚 = 0, implying that 𝜔𝑛𝑚 = ±𝜔 and

necessarily

𝑞𝑛𝑚(0) = 0 i𝑓 𝑚 ≠ 𝑛 + 1 𝑞𝑛𝑚(0) ≠ 0 i𝑓 𝑚 = 𝑛 + 1.

We thus find the structure

̂𝑞 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 𝑞01 0 0 …
𝑞10 0 𝑞12 0 …
0 𝑞21 0 𝑞23 …
0 0 𝑞32 0 …
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

and from 𝑃𝑛𝑚 = 𝑖𝑚𝜔𝑛𝑚𝑞𝑛𝑚,
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̂𝑃 = 𝑖𝑚𝜔
⎛⎜⎜⎜⎜⎜⎜
⎝

0 −𝑞01 0 0 …
𝑞10 0 −𝑞12 0 …
0 𝑞21 0 −𝑞23 …
0 0 𝑞32 0 …
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

Using the commutation relation [ ̂𝑞, ̂𝑃 ] = 𝑖ℏ𝟙̂ we have that

− 2𝑖𝑚𝜔
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑞01𝑞10 0 0 0 …
0 𝑞12𝑞21 − 𝑞01𝑞10 0 0 …
0 0 𝑞23𝑞32 − 𝑞12𝑞21 0 …
0 0 0 𝑞34𝑞43 − 𝑞23𝑞32 …
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.1)

= 𝑖ℏ
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 …
0 1 0 0 …
0 0 1 0 …
0 0 0 1 …
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.2)

from which we derive the recurrence formula

𝑞𝑛 𝑛+1𝑞𝑛+1 𝑛 = |𝑞𝑛 𝑛+1|2 = (𝑛 + 1) ℏ
2𝑚𝜔,

and

𝐻𝑛𝑛 = 𝑚𝜔2 (|𝑞𝑛 𝑛+1|2 + |𝑞𝑛 𝑛−1|2) = ℏ𝜔
2 (2𝑛 + 1) .

2.3. Being practical

After Dirac and Von Neumann we now know that there is more in quantum mechanics than
”tables”, commutator and oscillating elements. Indeed, having an Hilbert space for the linear
operators directly implies the existence of states of the Hilbert space that constitute the
domains of such operators. Moreover the linear algebra structure is also not sufficient, since
for many particles we need a tensor product, and so we rather deal with multi-linear algebra.
But the core of Heisenberg’s matrix mechanics and his perspective on quantum theory are
still very central, as it will be clear in the rest of the course. What we do is in practice very
similar in its logic:
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• find all the degrees of freedom describing your problem as you would do in classical
physics [e.g. define particle positions 𝑥1, 𝑥2, 𝑥3 …, or any generalized coordinate system
𝑞, or voltages and magnetic flux in circuit 𝑉 , Φ, or even fields like E(r), B(r)...].

• use the equation of motions from classical mechanics to derive a Lagrangian and then
an Hamiltonian with canonical variables generically labelled as 𝑞, 𝑃 . Here you could
eventually employ approximations based on energy-time scales considerations (small
amplitude oscillations, adiabatic elimination of fast variables etc...). This last sentence
is not rigorous, but most of the time it works in the spirit of this quantum to classical
relation.

• impose the canonical commutation relations [ ̂𝑞, ̂𝑃 ] = 𝑖ℏ. Now the canonical variables
(whatever they are) are interpreted as linear operators on an infinite dimensional Hilbert
space ℋ (Heisenberg’s tables). This procedure preserves the algebraic relations between
canonical variables given by Hamiltonian mechanics and, as Dirac showed, is equivalent
to replacing Poisson brackets with commutator.

• find a good basis {|𝑛⟩} for ℋ and represent all the operators as infinite matrices by
computing their matrix elements ⟨𝑛| ̂𝐴|𝑚⟩ ( ̂𝐴 is an arbitrary operator of the considered
problem).

• truncate the Hilbert space and make the matrices finite.

• finite dimensional matrices are typical objects well suitable for digital processors, so
make numerics on a computer.

• interpret the results probabilistically using the Born rule.

14



3. About the course

3.1. Why simulate open quantum systems?

The experimental frontier of quantum optics increasingly targets systems that cannot be
described by perfectly isolated, unitary dynamics. Photons leak from cavities, solid‑state
qubits couple to phonons, and measurement back‑action reshapes quantum states in real time.
In these scenarios the open character of the system—the interplay between coherent evolution
and irreversible processes—becomes the defining feature, not a perturbation. Analytical
solutions exist only for a handful of toy models; to design devices, interpret data, and test
conceptual ideas we therefore rely on numerical simulation of open quantum dynamics.

Numerical methods allow us to:

• Predict observables such as spectra, correlation functions, or entanglement measures
before running an experiment.

• Prototype control protocols (e.g., pulse shaping or feedback) that can stabilize
fragile quantum states.

• Explore parameter regimes that are inaccessible analytically, revealing new phe-
nomena like dissipative phase transitions or non‑Markovian memory effects.

3.2. Why Python?

Python is not the fastest language for floating‑point arithmetic—compiled languages like C
or Fortran still win raw speed benchmarks—but it has become the lingua franca of modern
scientific computing. Three qualities make it particularly compelling for our purposes:

1. Expressiveness – A succinct, readable syntax lowers cognitive overhead and lets us
translate mathematical ideas into code quickly.

2. Rich ecosystem – Numpy, SciPy, Jupyter, Matplotlib, and data‑analysis libraries co-
exist seamlessly, providing everything from linear algebra kernels to publication‑quality
plots.

3. Community & portability – Tutorials, StackOverflow answers, CI pipelines, and
cloud platforms such as Google Colab enable beginners to run the same notebooks
locally or on GPUs in the cloud with negligible setup.
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Figure 3.1.: Description of an open quantum system and its practical applications. A quan-
tum system interacts with a macroscopic environment, leading to decoherence
and dissipation. The evolution of the system is described the master equation

̇̂𝜌 = ℒ𝑇 (𝑡)[ ̂𝜌], where ̂𝜌 is the density matrix and ℒ𝑇 (𝑡) is the Liouville superop-
erator. The solution can be used to study the steady state and non-equilibrium
properties of the system. The theoretical study of open quantum systems of-
fers several tools for modeling spin resonance, optical spectra, and quantum
information processing, and their use is certainly not limited to these fields and
applications. Reproduced from (Campaioli, Cole, and Hapuarachchi 2024) under
a CC BY 4.0 license.

Most importantly, Python hosts QuTiP (Quantum Toolbox in Python)(Johansson, Na-
tion, and Nori 2012; Lambert et al. 2024) the de‑facto standard library for simulating open
quantum systems. QuTiP wraps efficient C and Fortran back‑ends behind a high‑level in-
terface: you manipulate Qobj instances instead of raw matrices, and you call solvers such
as mesolve or mcsolve for Lindblad‑master equations and quantum trajectory simulations,
respectively. The package is actively maintained, well documented, and battle‑tested across
thousands of research papers.

3.3. How does Python differ from other mainstream languages?

Language Paradigm Typical strength Typical weakness
C / C++ Compiled,

low‑level
Maximal performance,
fine‑grained memory
control

Verbose, higher barrier
to entry, manual
parallelization

Fortran Compiled,
array‑oriented

Legacy HPC codes,
excellent BLAS/LAPACK
bindings

Limited modern features,
smaller community
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Language Paradigm Typical strength Typical weakness
MATLAB Proprietary,

array‑oriented
Integrated IDE, built‑in
plotting, domain‑specific
toolboxes

License cost, closed
ecosystem

Python Interpreted,
multi‑paradigm

Readability, vast
open‑source libraries,
rapid prototyping

Overhead of interpreter,
GIL limits naive
multithreading

Python balances high‑level productivity with the option to call compiled extensions (via
Cython, Numba, or Rust bindings) whenever performance matters.

3.4. A glance at Julia and QuantumToolbox.jl

While Python dominates current scientific computing, it is not the only contender. In re-
cent years, researchers and engineers have been exploring the need for a new programming
language—one that combines the performance of compiled languages like C or Fortran with
the ease of use and readability of scripting languages like Python or MATLAB. This is the
motivation behind Julia.

Julia promises “C‑like speed with Python‑like syntax” by using just‑in‑time (JIT) compilation
and a multiple‑dispatch programming model. Within this language, the package Quantum-
Toolbox.jl(Mercurio et al. 2025) has emerged as a high‑performance analog to QuTiP. It
mirrors QuTiP’s API but benefits from Julia’s performance model and native automatic
differentiation. Benchmarks already demonstrate significant speed‑ups, especially for large
Hilbert spaces and GPU‑accelerated workloads.

Nevertheless, Julia’s ecosystem is still maturing. Its tooling, package stability, and IDE
support are evolving rapidly but are not yet as robust as Python’s. Similarly, QuantumTool-
box.jl, while powerful, has a smaller user base and fewer educational resources compared to
QuTiP. For a course focused on accessibility and broad applicability, we therefore choose to
prioritize Python and QuTiP as the more mature and stable learning platform.

3.5. Course scope

In this course we therefore focus on Python + QuTiP. You will learn to:

• Build Hamiltonians and collapse operators in a composable way.
• Integrate master equations and unravel them into quantum trajectories.
• Compute expectation values, spectra, and correlation functions.
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• Couple simulations to optimisation or machine‑learning workflows within the wider
Python ecosystem.

Where Julia can offer useful perspective we will point out parallels, but all hands‑on examples
will run in Python notebooks that you can execute locally or on Colab.

Take‑away: Numerical simulation is the microscope of modern quantum optics.
Python and QuTiP give us a practical, accessible, and well‑supported platform
for that microscope—letting us peer into the dynamics of open quantum systems
without getting lost in low‑level details.

3.6. First steps in Python: lists, loops, and functions

3.6.1. Creating and using lists

Before diving into numerical simulations, it’s useful to get acquainted with the basic syntax
and features of Python. One of the simplest and most commonly used data structures is
the list, which stores a sequence of elements. Lists are flexible—they can contain numbers,
strings, or even other lists.

Here’s how to create and access elements in a list:

fruits = ['apple', 'banana', 'cherry']
print(f'First fruit: {fruits[0]}')

First fruit: apple

3.6.2. For loops

A for loop allows us to iterate through each item in a collection and execute the same block of
code for every element. You will use loops constantly—whether you are sweeping parameter
values, accumulating results, or analysing datasets—so it is worth seeing the syntax early.

for fruit in fruits:
print(f'I like {fruit}')

I like apple
I like banana
I like cherry
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3.6.3. Defining functions

Functions bundle reusable logic behind a descriptive name. In quantum‑optics simulations,
well‑structured functions help keep notebooks tidy—for instance, collecting the code that
builds a Hamiltonian or evaluates an observable in one place. Below is a minimal example
that squares a number.

def square(x):
return x * x

print(square(5))

25

3.6.4. Lambda (anonymous) functions

Occasionally we only need a small, throw‑away function—say, as a callback or key in a sort
operation. Python’s lambda syntax lets us declare such anonymous functions in a single line,
without the ceremony of def.

square_lambda = lambda x: x * x
print(square_lambda(5))

25

3.6.5. Complex numbers

Python has built‑in support for complex numbers, which are represented as a + bj, where a
is the real part and b is the imaginary part. This is particularly useful in quantum mechanics,
where complex numbers are ubiquitous.

z = 1 + 2j
print(f'Complex number: {z}')
print(f'Real part: {z.real}')
print(f'Magnitude: {abs(z)}')

Complex number: (1+2j)
Real part: 1.0
Magnitude: 2.23606797749979
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3.6.6. Why plain Python lists can be slow

Python lists store references to arbitrary Python objects. Each element carries its own
type information and reference count. When you perform arithmetic on list elements, the
interpreter must

1. Look up the byte‑code for each operation.
2. Resolve types at runtime.
3. Dispatch to the correct C implementation.

This per‑element overhead dominates runtime in numerical workloads.

3.6.7. Enter numpy

To overcome the performance limits of pure‑Python lists, we turn to NumPy, which
stores data in contiguous, fixed‑type arrays and dispatches mathematical operations to
highly‑optimised C (and often SIMD/GPU) kernels. The example below shows how you can
express a million‑element computation in just two vectorised lines.

numpy provides fixed‑type, contiguous arrays backed by efficient C (or SIMD/GPU) loops.
Operations are dispatched once for the whole array, eliminating Python‑level overhead and
unlocking BLAS/LAPACK acceleration.

As an example, we can compute the sum of all the elements of a python list, comparing the
performance with a numpy array.

import numpy as np
import time # Only for benchmarking

my_list = [i / 1_000_000 for i in range(1_000_000)]

start = time.time() # start timer
sum_list = sum(my_list) # sum using Python list
end = time.time() # end timer
print(f'Sum using list: {sum_list}, '

f'Time taken: {1e3*(end - start):.4f} milliseconds')

my_list_numpy = np.array(my_list)
start = time.time() # start timer
sum_numpy = np.sum(my_list_numpy) # sum using numpy array
end = time.time() # end timer
print(f'Sum using numpy: {sum_numpy}, '

f'Time taken: {1e3*(end - start):.4f} milliseconds')
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Sum using list: 499999.5, Time taken: 8.0342 milliseconds
Sum using numpy: 499999.5, Time taken: 0.3781 milliseconds

NumPy is also able to perform vectorized operations, which let us express complex compu-
tations in a few lines of code. For example, we can compute a function of all elements in an
array without writing explicit loops. This is not only more readable but also significantly
faster, as the underlying C code can be optimised for performance.

# Vectorized array operations
x = np.linspace(0, 100, 1_000_000)
y = np.sin(x) + 0.5 * x**2
print(y[:5]) # show first five results

[0. 0.00010001 0.00020002 0.00030005 0.00040008]

One line performs a million floating‑point operations in compiled code—often orders of mag-
nitude faster than an explicit Python loop.
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4. Linear Algebra with NumPy and SciPy

Quantum systems are described by vectors and operators in complex Hilbert spaces.
States |𝜓⟩ correspond to column vectors, and observables—like the Hamiltonian 𝐻̂ or spin
operators—are represented by matrices. Tasks such as finding energy spectra via eigenvalue
decompositions, simulating time evolution through operator exponentials, and building
composite systems with tensor (Kronecker) products all reduce to core linear‐algebra
operations.

In this chapter, we will leverage NumPy’s and SciPy’s routines (backed by optimized
BLAS/LAPACK) to perform matrix–matrix products, eigen-decompositions, vector norms,
and more. When system size grows, SciPy’s sparse data structures and Krylov‐subspace
solvers will let us handle very large, structured operators efficiently.

By blending physical intuition (Schrödinger’s equation, expectation values, operator algebra)
with hands‐on Python code, you’ll see how powerful and intuitive modern linear‐algebra
libraries can be for quantum‐mechanics simulations. Let’s get started!

4.1. NumPy: The Foundation of Dense Linear Algebra

NumPy provides the ndarray type, an efficient, N-dimensional array stored in contiguous
memory. This layout makes vectorized operations and low-level BLAS calls blazing fast. At
its simplest, a 2D ndarray represents a matrix:

𝐴 = (𝑎11 𝑎12
𝑎21 𝑎22

) ,

and a 1D ndarray represents a column vector:

v = (𝑣1
𝑣2

) .

NumPy’s dense arrays form the backbone of many quantum‐simulation tasks—building
Hamiltonians, computing overlaps, and propagating states all reduce to these core operations.
Having a quick reference for them can speed up both writing and reading simulation code.
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4.1.1. Summary of Core Functions

Operation Equation NumPy call
Matrix–matrix product 𝐶 = 𝐴𝐵 C = A.dot(B) or A @ B
Matrix–vector product w = 𝐴v w = A.dot(v)
Eigenvalues and
eigenvectors

𝐴x = 𝜆x w, v =
np.linalg.eig(A)

Determinant det(𝐴) np.linalg.det(A)
Inverse 𝐴−1 np.linalg.inv(A)
Norm (Frobenius) ‖𝐴‖𝐹 = √∑𝑖𝑗 |𝑎𝑖𝑗|2 np.linalg.norm(A)
Kronecker product 𝐴 ⊗ 𝐵 np.kron(A, B)

In the table above, each abstract operation is paired with its NumPy call. Notice how intuitive
the syntax is: the @ operator reads like the usual linear-algebra notation.

4.1.2. Matrix–Matrix and Matrix–Vector Multiplication

Let’s consider a simple example of a 2×2 matrix 𝐴 and a 2-vector v. This captures key ideas:
operator composition via matrix–matrix products and state evolution via matrix–vector prod-
ucts. Indeed, in quantum mechanics, applying one operator after another corresponds to a
matrix–matrix product, while acting on a quantum state uses a matrix–vector product. Con-
sider the following:

import numpy as np

# Define a 2×2 matrix and a 2-vector
A = np.array([[1, 2], [3, 4]])
v = np.array([5, 6])

# Matrix–matrix product
c = A @ A # same as A.dot(A)
display("A @ A =", c)

# Matrix–vector product
w = A @ v # same as A.dot(v)
display("A @ v =", w)

'A @ A ='
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array([[ 7, 10],
[15, 22]])

'A @ v ='

array([17, 39])

Here, A @ A computes 𝐴2, and A @ v computes 𝐴v.

4.1.3. Diagonalization

The eigenvalue problem is one of the cornerstones of both applied mathematics and quantum
mechanics. Given a square matrix 𝐴 ∈ ℂ𝑛×𝑛, we seek scalars 𝜆 ∈ ℂ (eigenvalues) and nonzero
vectors x ∈ ℂ𝑛 (eigenvectors) such that

𝐴 x = 𝜆 x.

Physically, in quantum mechanics, 𝐴 might be the Hamiltonian operator 𝐻̂, its eigenvalues
𝜆 correspond to allowed energy levels, and the eigenvectors x represent stationary states.
Mathematically, diagonalizing 𝐴 transforms it into a simple form

𝐴 = 𝑉 Λ 𝑉 −1,

where Λ is the diagonal matrix of eigenvalues and the columns of 𝑉 are the corresponding
eigenvectors. Once in diagonal form, many operations—such as computing matrix exponen-
tials for time evolution, powers of 𝐴, or resolving a system of differential equations—become
trivial:

𝑓(𝐴) = 𝑉 𝑓(Λ) 𝑉 −1, 𝑓(Λ) = diag(𝑓(𝜆1), … , 𝑓(𝜆𝑛)).

In practice, NumPy’s np.linalg.eig calls optimized LAPACK routines to compute all eigen-
pairs of a dense matrix:

w, v = np.linalg.eig(A)
display("Eigenvalues:", w)
display("Eigenvectors (as columns):\n", v)
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'Eigenvalues:'

array([-0.37228132, 5.37228132])

'Eigenvectors (as columns):\n'

array([[-0.82456484, -0.41597356],
[ 0.56576746, -0.90937671]])

Under the hood, NumPy calls optimized LAPACK routines to diagonalize dense matrices.

4.1.4. Kronecker Product

In quantum mechanics, the state space of a composite system is the tensor product of the
state spaces of its subsystems. If system 1 has Hilbert space ℋ𝐴 of dimension 𝑚 and system
2 has ℋ𝐵 of dimension 𝑝, then the joint space is ℋ𝐴 ⊗ ℋ𝐵 of dimension 𝑚𝑝. Operators on
the composite system factorize as tensor (Kronecker) products of subsystem operators. For
example, if 𝐴 acts on system 1 and 𝐵 on system 2, then

𝐴 ⊗ 𝐵 ∶ ℋ𝐴 ⊗ ℋ𝐵 → ℋ𝐴 ⊗ ℋ𝐵

has matrix elements
(𝐴 ⊗ 𝐵)(𝑖 , 𝛼),(𝑗 , 𝛽) = 𝐴𝑖𝑗 𝐵𝛼𝛽,

and in block form

𝐴 ⊗ 𝐵 = ⎛⎜
⎝

𝑎11 𝐵 𝑎12 𝐵 ⋯ 𝑎1𝑛 𝐵
⋮ ⋮

𝑎𝑚1 𝐵 𝑎𝑚2 𝐵 ⋯ 𝑎𝑚𝑛 𝐵
⎞⎟
⎠

,

yielding an 𝑚𝑝 × 𝑛𝑞 matrix when 𝐴 ∈ ℂ𝑚×𝑛 and 𝐵 ∈ ℂ𝑝×𝑞.

Why is this useful? In later chapters we will build multi‐qubit gates (e.g. CNOT, controlled-
phase), couple different oscillators, and assemble large Hamiltonians by taking tensor prod-
ucts of single‐mode operators. The Kronecker product lets us lift any local operator into the
full, composite Hilbert space.

In NumPy, the Kronecker product is computed with np.kron:

B = np.array([[0, 1], [1, 0]]) # Pauli-X matrix
kron = np.kron(A, B)
display("A � B =", kron)
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'A � B ='

array([[0, 1, 0, 2],
[1, 0, 2, 0],
[0, 3, 0, 4],
[3, 0, 4, 0]])

Kronecker products build composite quantum-system operators from single-subsystem oper-
ators.

4.2. SciPy: Advanced Algorithms and Sparse Data

While NumPy covers dense linear algebra, SciPy complements it with:

Module Purpose
scipy.linalg Alternative LAPACK-based routines for dense ops
scipy.sparse Data structures (COO, CSR, CSC) for sparse matrices
scipy.sparse.linalg Iterative solvers (e.g. Arnoldi, Lanczos)
scipy.integrate ODE and quadrature routines
scipy.optimize Root-finding and minimization
scipy.special Special mathematical functions

Compared to NumPy, SciPy’s routines often expose extra options (e.g. choosing solvers) and
can handle very large, sparse systems efficiently.

4.3. Some Useful Functions

Below are a few handy SciPy routines:

• Determinant: scipy.linalg.det
• Inverse: scipy.linalg.inv
• Frobenius norm: scipy.linalg.norm
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import scipy.linalg as la

det = la.det(A)
inv = la.inv(A)
norm_f = la.norm(A)
display(det, inv, norm_f)

np.float64(-2.0)

array([[-2. , 1. ],
[ 1.5, -0.5]])

np.float64(5.477225575051661)

4.4. Solving Linear Systems

A linear system has the form

𝐴 x = b,

where 𝐴 ∈ ℝ𝑛×𝑛 and b ∈ ℝ𝑛 is known. For small 𝑛 you can even solve by hand. For example,
consider the 2 × 2 system

{𝑥1 + 2𝑥2 = 5,
3𝑥1 + 4𝑥2 = 11. ⟹ 𝐴 = (1 2

3 4) , b = ( 5
11) .

We can reproduce this with NumPy:

A = np.array([[1, 2], [3, 4]])
b = np.array([5, 11])
x = np.linalg.solve(A, b)
display("Solution x=", x)

'Solution x='

array([1., 2.])

SciPy’s sparse module also offers scipy.sparse.linalg.spsolve for large, sparse 𝐴.
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4.5. Sparse Matrices

As quantum systems scale to many degrees of freedom, the underlying operators—such as
Hamiltonians or Liouvillian superoperators—grow exponentially in dimension but often re-
main highly structured and sparse. Instead of storing dense arrays with mostly zeros, sparse-
matrix formats only record nonzero entries and their indices, dramatically reducing memory
requirements. Common physical models, like spin chains with nearest-neighbor couplings
or lattice Hamiltonians, have only 𝒪(𝑁) or 𝒪(𝑁 log 𝑁) nonzero elements, making sparse
representations essential for large-scale simulations.

In the following sections, we will:

• Construct sparse matrices in COO formats with SciPy.
• Illustrate basic sparse-matrix operations (matrix–vector products, format conversions).
• Use scipy.sparse.linalg.eigs (Arnoldi) to compute a few eigenvalues of a sparse

Hamiltonian.

The Coordinate (COO) format is a simple way to store sparse matrices. Instead of storing
all entries, the COO format only keeps nonzero entries of the form (𝑖, 𝑗, 𝑎𝑖𝑗), which saves
memory and speeds up computations. Graphically, a 5×5 example with 4 nonzeros might
look like:

𝐴 =
⎛⎜⎜⎜⎜⎜⎜
⎝

7 ⋅ ⋅ ⋅ 1
⋅ ⋅ 2 ⋅ ⋅
⋅ 3 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
4 ⋅ ⋅ ⋅ ⋅

⎞⎟⎟⎟⎟⎟⎟
⎠

Here each number shows a location and its value. COO is very simple and intuitive, but
not the most efficient. For larger matrices, we can use the Compressed Sparse Row (CSR)
or Compressed Sparse Column (CSC) formats, which store the nonzero entries in a more
compact way. The CSR format is very efficient for matrix–vector products.

Such matrix can be created in SciPy using the coo_matrix class:

from scipy import sparse

# Create a sparse COO matrix
i = [0, 0, 1, 2, 4] # row indices
j = [0, 4, 2, 1, 0] # column indices
data = [7, 1, 2, 3, 4] # nonzero values
coo = sparse.coo_matrix((data, (i, j)), shape=(5, 5))
coo
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<COOrdinate sparse matrix of dtype 'int64'
with 5 stored elements and shape (5, 5)>

It is also possible to convert between different sparse formats. For example, to convert a
COO matrix to CSR format, you can use the tocsc() method:

# Convert COO to CSR format
csr = coo.tocsr()
csr

<Compressed Sparse Row sparse matrix of dtype 'int64'
with 5 stored elements and shape (5, 5)>

And the matrix–vector product is as simple as:

# Matrix–vector product
v = np.array([1, 2, 3, 4, 5])
w = coo @ v # same as coo.dot(v)
w

array([12, 6, 6, 0, 4])

4.5.1. Eigenvalues of Sparse Matrices

Even with sparse storage, direct methods (dense diagonalization or full factorization) become
intractable when the matrix dimension exceeds millions. To extract a few extremal eigenval-
ues or approximate time evolution, Krylov-subspace approaches (like the Arnoldi algorithm)
build a low-dimensional orthonormal basis that captures the action of the operator on a
subspace. By repeatedly applying the sparse matrix to basis vectors and orthogonalizing,
Arnoldi produces a small Hessenberg matrix whose eigenpairs approximate those of the full
operator. This hybrid strategy leverages both memory-efficient storage and iterative linear
algebra to access spectral properties of huge quantum systems.

To approximate a few eigenvalues of a large, sparse matrix 𝐴, SciPy’s eigs implements the
Arnoldi algorithm. Under the hood it builds an 𝑚-dimensional Krylov basis. More precisely,
given a starting vector 𝑣1 with ‖𝑣1‖2 = 1, the 𝑚‑dimensional Krylov subspace is

𝒦𝑚(𝐴, 𝑣1) = span{𝑣1, 𝐴𝑣1, 𝐴2𝑣1, … , 𝐴𝑚−1𝑣1}.
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The Arnoldi iteration produces the decomposition

𝐴𝑉𝑚 = 𝑉𝑚𝐻𝑚 + ℎ𝑚+1,𝑚 𝑣𝑚+1𝑒⊤
𝑚,

where

• 𝑉𝑚 = [𝑣1, … , 𝑣𝑚] has orthonormal columns,
• 𝐻𝑚 is an 𝑚 × 𝑚 upper‑Hessenberg matrix,
• 𝑒𝑚 is the 𝑚‑th canonical basis vector.

The eigenvalues of 𝐻𝑚 are called Ritz values; they approximate eigenvalues of 𝐴. As 𝑚
grows, the approximation improves. In practice we combine Arnoldi with a restart strategy
(after reaching a given 𝑚 we keep the most accurate Ritz vectors and build a fresh Krylov
basis). SciPy’s scipy.sparse.linalg.eigs wrapper uses the implicitly restarted Arnoldi
method from ARPACK.

As a pseudo-code, the Arnoldi algorithm can be summarized as follows:

1. Pick a random vector 𝑣 and normalize it.
2. For 𝑗 = 1, … , 𝑚

1. 𝑤 = 𝐴𝑣𝑗
2. Orthogonalize:

ℎ𝑖,𝑗 = 𝑣†
𝑖 𝑤, 𝑤 ← 𝑤 − ℎ𝑖,𝑗𝑣𝑖 (𝑖 = 1, … , 𝑗)

3. ℎ𝑗+1,𝑗 = ‖𝑤‖2.
4. If ℎ𝑗+1,𝑗 = 0, stop (the Krylov subspace is invariant).
5. 𝑣𝑗+1 = 𝑤/ℎ𝑗+1,𝑗.

The cost is 𝑚 sparse matrix–vector products and 𝒪(𝑚2𝑛) scalar operations for orthogonal-
ization (which stays moderate when 𝑚 ≪ 𝑛).

Here’s a concrete example:

from scipy.sparse.linalg import eigs

# Compute the 2 largest-magnitude eigenvalues of coo
vals, vecs = eigs(coo, k=2)
display("Sparse eigenvalues:", vals)

'Sparse eigenvalues:'

array([7.53112887+0.j, 2.44948974+0.j])
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5. Speeding up Python for Linear Algebra
Tasks

Python is easy to read, but pure-Python loops can be slow if you do not leverage optimized
libraries (BLAS, LAPACK). Here we explore two tools—Numba and JAX—to accelerate
common linear algebra operations.

5.1. Numba: Just-In-Time Compilation

Numba uses LLVM to compile Python functions to machine code at runtime. Key points:

• Decorators: Use @njit (nopython mode) for best speed.

• Type inference: Numba infers types on first run, then compiles specialized code.

• Compilation overhead: The first call incurs compilation time; subsequent calls are
fast.

• Object mode vs nopython mode: Always aim for nopython mode to avoid Python
object overhead.

JIT Workflow 1. Call function → type inference → LLVM IR generation.
2. LLVM IR → machine code (cached).
3. Subsequent calls use cached machine code.

Example: Matrix–Vector Multiplication

from numba import njit
import numpy as np
import time # for timing

@njit
def matvec(A, x):

m, n = A.shape
y = np.zeros(m)
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for i in range(m):
temp = 0.0
for j in range(n):

temp += A[i, j] * x[j]
y[i] = temp

return y

# Prepare data
dim = 500
A = np.random.rand(dim, dim)
x = np.random.rand(dim)

# Using NumPy's dot product
start = time.time()
y0 = A @ x
end = time.time()
print("NumPy time (ms): ", 1e3*(end - start))

# Using Numba's compiled function
y0 = matvec(A, x) # First call for compilation

start = time.time()
y1 = matvec(A, x)
end = time.time()
print("Numba time (ms): ", 1e3*(end - start))

NumPy time (ms): 0.3027915954589844
Numba time (ms): 0.29087066650390625

In practice, Numba can speed up this looped version by 10×–100× compared to pure Python,
approaching the speed of NumPy’s optimized routines. The reader is encouraged to try the
code without the @njit decorator to see the difference in performance.

5.2. JAX: XLA Compilation and Automatic Differentiation

JAX is a high-performance library from Google Research that extends NumPy with just-
in-time compilation and automatic differentiation. It - Compiles array operations via XLA,
fusing kernels and reducing Python overhead. - Supports GPU and TPU backends with
minimal code changes. - Provides grad for gradients of scalar functions, enabling optimisation
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and machine-learning tasks. - Offers advanced transformations like vmap (vectorisation) and
pmap (parallelism on multiple devices).

JAX is widely used in deep learning frameworks (e.g. Flax, Haiku), reinforcement learning,
and scientific research (including physics simulations), thanks to its blend of speed and flexi-
bility.

5.2.1. A Quick Overview of Automatic Differentiation

Automatic differentiation (AD) is a family of techniques to compute exact derivatives of
functions defined by computer programs. Unlike symbolic differentiation (which can lead to
expression swell) or numerical finite-difference (which suffers from truncation and round-off
error), AD exploits the fact that any complex function is ultimately composed of a finite set
of elementary operations (addition, multiplication, sin, exp, …) whose derivatives are known
exactly.

5.2.1.1. Limitations of Finite Differences

A common finite-difference formula for a scalar function 𝑓(𝑥) is the central difference

𝑑𝑓
𝑑𝑥(𝑥) ≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ ,

with local truncation error 𝒪(ℎ2). However, this approach has important limitations:

1. Truncation vs. round-off: If ℎ is too large, the 𝒪(ℎ2) term dominates. If ℎ is too
small, floating-point cancellation makes the numerator 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ) inaccurate.

2. Cost with many parameters: For 𝑓 ∶ ℝ𝑛 → ℝ, the gradient component 𝑖 is

𝜕𝑓
𝜕𝑥𝑖

(x) ≈ 𝑓(x + ℎe𝑖) − 𝑓(x − ℎe𝑖)
2ℎ .

Computing all 𝑛 components requires 2𝑛 evaluations of 𝑓 , so the cost scales as 𝒪(𝑛) in
𝑓-calls. For large 𝑛 (many parameters), this becomes prohibitive.

3. Non-smooth or branching code: When 𝑓 contains control flow or non-differentiable
operations, finite differences may give misleading or undefined results.
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5.2.1.2. Automatic Differentiation and the Chain Rule

Automatic differentiation (AD) applies the chain rule to each elementary operation in code
(addition, multiplication, sin, exp, etc.), yielding exact derivatives up to floating-point preci-
sion. For a composition

𝑢 = 𝑔(𝑥), 𝑦 = 𝑓(𝑢),

AD uses the chain rule:

𝑑𝑦
𝑑𝑥 = 𝑑𝑓

𝑑𝑢
𝑑𝑔
𝑑𝑥.

In more complex nests, e.g.

𝑣 = ℎ(𝑢), 𝑢 = 𝑔(𝑥), 𝑦 = 𝑓(𝑣),

we get

𝑑𝑦
𝑑𝑥 = 𝑑𝑓

𝑑𝑣
𝑑ℎ
𝑑𝑢

𝑑𝑔
𝑑𝑥.

AD comes in two modes:

• Forward mode (propagate derivatives from inputs to outputs).
• Reverse mode (propagate sensitivities from outputs back to inputs).

JAX implements both and selects the most efficient strategy automatically.

5.2.1.3. Comparing Accuracy: AD vs Finite Differences

Below is a Quarto code cell that plots the error of finite differences (varying step size ℎ) and
automatic differentiation against the true derivative of 𝑓(𝑥) = 𝑒sin(𝑥) at 𝑥 = 1.0.

import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt # for plotting

# Set JAX to use 64-bit floats
jax.config.update("jax_enable_x64", True)
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# Define function and true derivative
def f_np(x):

return np.exp(np.sin(x))

def df_true(x):
return np.cos(x) * np.exp(np.sin(x))

# Point of evaluation
x0 = 1.0

# Finite-difference errors for varying h
hs = np.logspace(-8, -1, 50)
errors_fd = []
for h in hs:

df_fd = (f_np(x0 + h) - f_np(x0 - h)) / (2 * h)
errors_fd.append(abs(df_fd - df_true(x0)))

# Automatic differentiation error (constant)
df_ad = jax.grad(lambda x: jnp.exp(jnp.sin(x)))(x0)
error_ad = abs(np.array(df_ad) - df_true(x0))

print(f"AD error: {error_ad}")
print(f"FD minimum error: {min(errors_fd)}")

# Plot
fig, ax = plt.subplots()
ax.loglog(hs, errors_fd, marker="o")
ax.set_xlabel("Step size $h$")
ax.set_ylabel("Error of Finite Differences")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")

AD error: 0.0
FD minimum error: 7.006839553014288e-12
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This plot illustrates that finite differences achieve minimal error at an optimal ℎ, but degrade
for too large or too small ℎ, while AD remains accurate to machine precision regardless of
step size.

5.3. Why Computing Gradients Is Important in Quantum Physics

In quantum physics, many problems reduce to optimizing parameters in a model or a control
protocol. Computing gradients of a cost function with respect to these parameters is essential
for efficient and reliable optimization.

1. Variational quantum algorithms: In methods like the variational quantum eigen-
solver (VQE)(Peruzzo et al. 2014), a parametrised quantum state |𝜓(𝜃)⟩ depends on
parameters 𝜃 = (𝜃1, … , 𝜃𝑛). One minimises the expectation

𝐸(𝜃) = ⟨𝜓(𝜃)|𝐻̂|𝜓(𝜃)⟩.

Gradient-based methods require

𝜕𝐸
𝜕𝜃𝑖

= 𝜕
𝜕𝜃𝑖

⟨𝜓(𝜃)|𝐻̂|𝜓(𝜃)⟩.

AD enables exact evaluation of these derivatives through the quantum circuit parame-
ters, improving convergence compared to gradient-free methods.
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2. Quantum optimal control(D’Alessandro 2021; Khaneja et al. 2005): One shapes
control fields 𝑢(𝑡) in the Hamiltonian

𝐻̂(𝑡; 𝑢) = 𝐻̂0 + ∑
𝑖

𝑢𝑖(𝑡)𝐻̂𝑖

to drive the system from an initial state |𝜓0⟩ to a target |𝜓𝑇 ⟩. A typical cost function
is

𝐽[𝑢] = 1 − |⟨𝜓𝑇 |𝒰𝑇 [𝑢]|𝜓0⟩|2,

where 𝒰𝑇 [𝑢] is the time-ordered evolution. Computing gradients 𝛿𝐽/𝛿𝑢𝑖(𝑡) is needed for
gradient-ascent pulse engineering (GRAPE) algorithms. AD can differentiate through
time-discretised propagators and ODE solvers, automating derivation of 𝛿𝐽/𝛿𝑢𝑖(𝑡) and
providing machine-precision gradients for faster convergence.

3. Parameter estimation and tomography(Lvovsky and Raymer 2009): Maximum-
likelihood estimation for quantum states or processes often involves maximising a log-
likelihood 𝐿(𝜃). Gradients speed up estimation and enable standard optimisers (e.g. L-
BFGS).

By providing exact, efficient gradients even through complex quantum simulations (time
evolution, measurement models, noise), automatic differentiation (via JAX or similar frame-
works) has become a key tool in modern quantum physics research.

5.4. Summary

• Numba: Best for speeding up existing NumPy loops with minimal code changes. Ideal
when you do not need gradients or accelerators.

• JAX: Ideal for optimisation tasks requiring gradients, large-scale batch operations, or
GPU/TPU acceleration. The XLA compiler often outperforms loop-based JIT for fused
kernels.
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6. Ordinary Differential Equations

An ordinary differential equation (ODE) is an equation involving functions of one independent
variable (for instance, time) and its derivatives. In the simplest scenario, suppose we have
an unknown function 𝑦(𝑡). A first-order ODE can be written as:

𝑑𝑦(𝑡)
𝑑𝑡 = 𝑓(𝑦(𝑡), 𝑡),

where 𝑓 is a known function, and 𝑦(𝑡) is the unknown to be determined. Higher-order ODEs
can often be recast as systems of first-order ODEs by introducing additional variables for the
higher derivatives.

6.1. General Definition and Examples

To see how ODEs arise in physical scenarios, consider Newton’s second law, 𝑚 𝑑2𝑥
𝑑𝑡2 = 𝐹(𝑥, 𝑡).

This second-order ODE can be reduced to a system of two first-order ODEs by introducing
an auxiliary variable for velocity 𝑣(𝑡) = 𝑑𝑥

𝑑𝑡 . Then we have:

{
𝑑𝑥
𝑑𝑡 = 𝑣,
𝑑𝑣
𝑑𝑡 = 𝐹(𝑥,𝑡)

𝑚 .

In quantum mechanics, the time-dependent Schrödinger equation

𝑖ℏ 𝑑
𝑑𝑡 |𝜓(𝑡)⟩ = 𝐻̂ |𝜓(𝑡)⟩

can be viewed as a first-order ODE in the Hilbert space: the role of |𝜓(𝑡)⟩ is analogous to 𝑦(𝑡),
and − 𝑖

ℏ 𝐻̂ plays the role of 𝑓( ⋅ , 𝑡) (assuming a time-independent 𝐻̂). This analogy suggests
that the Schrödinger equation can be treated using standard ODE solution techniques or, in
more complicated cases, numerical integration.

A linear ODE has the form: 𝑑y(𝑡)
𝑑𝑡 = 𝐴 y(𝑡) + b(𝑡), where y(𝑡) is a vector function of time, 𝐴

is a constant (or possibly time-dependent) matrix, and b(𝑡) is a known inhomogeneous term.
If b(𝑡) = 0, the equation is said to be homogeneous.
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6.2. Solving Linear ODEs by Diagonalizing the System Matrix

A common case in quantum mechanics and in classical physics is the linear homogeneous
system:

𝑑y(𝑡)
𝑑𝑡 = 𝐴 y(𝑡), y(0) = y0, (6.1)

where 𝐴 is a constant 𝑛 × 𝑛 matrix, and y0 is the initial condition.

6.2.1. Eigenvalue Decomposition

If 𝐴 is diagonalizable, we can write:

𝐴 = 𝑉 𝐷 𝑉 −1,

where 𝐷 is a diagonal matrix whose entries are the eigenvalues 𝜆𝑖 of 𝐴, and the columns of
𝑉 are the corresponding eigenvectors. Define:

z(𝑡) = 𝑉 −1 y(𝑡).

Then, plugging this into Equation 6.1, we get

𝑑z(𝑡)
𝑑𝑡 = 𝑉 −1 𝑑y(𝑡)

𝑑𝑡 = 𝑉 −1 𝐴 y(𝑡) = 𝑉 −1 (𝑉 𝐷 𝑉 −1) y(𝑡) = 𝐷 z(𝑡).

Hence, in the z-coordinates, the system becomes a set of 𝑛 uncoupled first-order ODEs:

𝑑𝑧𝑖
𝑑𝑡 = 𝜆𝑖 𝑧𝑖(𝑡), for 𝑖 = 1, … , 𝑛.

These have the well-known solutions:

𝑧𝑖(𝑡) = 𝑧𝑖(0) 𝑒𝜆𝑖𝑡.
To enforce the initial condition y(0) = y0, we note that z(0) = 𝑉 −1 y0. Hence, transforming
back, we get:

y(𝑡) = 𝑉 z(𝑡) = 𝑉
⎛⎜⎜⎜⎜
⎝

𝑧1(0) 𝑒𝜆1𝑡

𝑧2(0) 𝑒𝜆2𝑡

⋮
𝑧𝑛(0) 𝑒𝜆𝑛𝑡

⎞⎟⎟⎟⎟
⎠

= 𝑉 𝑒𝐷𝑡 𝑉 −1 y0.
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Therefore, we obtain the compact form:

y(𝑡) = 𝑒𝐴𝑡 y0,

or, equivalently,

y(𝑡) = 𝑉 ⎛⎜
⎝

𝑒𝜆1

⋱
𝑒𝜆𝑛

⎞⎟
⎠

𝑉 −1y0 .

In the case of 𝐴 Hermitian, the time evolution can be expanded as

y(𝑡) = ∑
𝑖

(v†
𝑖 ⋅ y0)v𝑖 𝑒𝜆𝑖𝑡 ,

where v𝑖 are the eigenvectors of the matrix.

6.2.2. Relation to the Schrödinger Equation

When dealing with the time-dependent Schrödinger equation for a time-independent Hamil-
tonian 𝐻̂, we can represent |𝜓(𝑡)⟩ in a certain basis, turning the Schrödinger equation into:

𝑖ℏ 𝑑
𝑑𝑡c(𝑡) = 𝐻 c(𝑡),

or equivalently,

𝑑c(𝑡)
𝑑𝑡 = − 𝑖

ℏ 𝐻 c(𝑡).

We can identify 𝐴 = − 𝑖
ℏ 𝐻. If 𝐻 is diagonalizable (e.g., Hermitian matrices always have a

complete set of orthonormal eigenvectors), then the above solution technique via diagonal-
ization applies. The resulting exponential solution corresponds to the usual 𝑒− 𝑖

ℏ 𝐻𝑡 operator
that defines unitary time evolution in quantum mechanics.
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6.2.2.1. Example: Harmonic Oscillator

The harmonic oscillator is described by the second-order ODE:

𝑑2𝑥
𝑑𝑡2 + 𝜔2𝑥 = 0,

which can be rewritten as a first-order system:

{
𝑑𝑥
𝑑𝑡 = 𝑣,
𝑑𝑣
𝑑𝑡 = −𝜔2𝑥.

or, in matrix form:

𝑑
𝑑𝑡 (𝑥

𝑣) = ( 0 1
−𝜔2 0) (𝑥

𝑣) .

By diagonalizing the matrix, we can find the solution to this system.

import numpy as np

omega = 2.0

# Define the 2x2 matrix A
A = np.array([[0.0, 1.0],

[-omega**2, 0.0]])

# Initial condition: x(0) = 1, v(0) = 0.5
x0 = np.array([1.0, 0.5])

# Diagonalize A
eigs, V = np.linalg.eig(A)
V_inv = np.linalg.inv(V)

z0 = V_inv @ x0

# Define a time array
t_points = np.linspace(0, 2, 200)

X_t = []
for t in t_points:
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# Compute the solution at time t
z_t = np.diag(np.exp(eigs * t)) @ z0
x_t = V @ z_t # Transform back to original coordinates
X_t.append(x_t)

X_t = np.array(X_t).real

print("x(2) = ", X_t[-1])

x(2) = [-0.84284424 1.18678318]

We have: - A: the system matrix. - y0: initial condition y(0). - We diagonalize 𝐴 to find
𝐴 = 𝑉 𝐷𝑉 −1. - Then exp(𝐴𝑡) = 𝑉 exp(𝐷𝑡)𝑉 −1.

If you run the code, you’ll see the final value of y(2).
We could also visualize the time evolution:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(t_points, X_t[:, 0], label="$x(t)$")
ax.plot(t_points, X_t[:, 1], label="$v(t)$")
ax.plot(t_points, 0.5 * omega**2 * X_t[:, 0]**2 + 0.5 * X_t[:, 1]**2,

label="$E(t)$")
ax.set_xlabel("Time")
ax.set_ylabel("$y(t)$")
ax.legend()

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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6.3. Numerical Solution via the Euler Method

In many realistic situations (e.g., time-dependent Hamiltonians, nonlinear effects, large dis-
sipative systems described by master equations), finding an exact analytic solution can be
very challenging or impossible. We then rely on numerical methods to solve ODEs.

6.3.1. Forward Euler Method

One of the simplest methods is the forward Euler method. Suppose we want to solve:
𝑑y(𝑡)

𝑑𝑡 = f(y(𝑡), 𝑡), y(0) = y0.

We discretize time into steps 𝑡𝑛 = 𝑛 ℎ with step size ℎ. The Euler method approximates the
derivative at 𝑡𝑛 by a difference quotient:

𝑑y(𝑡𝑛)
𝑑𝑡 ≈ y𝑛+1 − y𝑛

ℎ .

Hence, the system becomes the algebraic update:

y𝑛+1 = y𝑛 + ℎ f(y𝑛, 𝑡𝑛),

with y0 known. After iterating this rule for 𝑛 = 0, 1, 2, …, we obtain an approximate solution
at discrete times 𝑡𝑛.
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6.3.2. Stability Criterion for the Euler Method

While the Euler method is straightforward, it can be susceptible to numerical instability when
the system has rapidly decaying or oscillatory modes. For example, consider the test equation
𝑑𝑦
𝑑𝑡 = 𝜆 𝑦, where 𝜆 is a (possibly complex) constant. The exact solution is 𝑦(𝑡) = 𝑦(0) 𝑒𝜆𝑡. In
the Euler scheme, we get

𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝜆 𝑦𝑛 = (1 + ℎ 𝜆) 𝑦𝑛.

Thus,

𝑦𝑛 = (1 + ℎ 𝜆)𝑛 𝑦0.

For the method to be stable (i.e., for 𝑦𝑛 to remain bounded in the limit 𝑛 → ∞ when the
exact solution is stable), we require:

|1 + ℎ 𝜆| < 1,

when the real part of 𝜆 is negative (dissipative system). If this condition is not met, the nu-
merical solution may diverge even though the true solution decays exponentially. In practice,
one must choose the time step ℎ small enough to satisfy such stability constraints.

6.3.2.1. Example: Harmonic Oscillator with Euler Method

Let’s now implement the forward Euler method for a simpler ODE. Consider the same
harmonic oscillator, Euler’s method approximates the evolution as:

(𝑥𝑛+1
𝑣𝑛+1

) ≃ (𝑥𝑛
𝑣𝑛

) + ℎ ( 0 1
−𝜔2 0) (𝑥𝑛

𝑣𝑛
) ,

where ℎ is the time step.

h = 0.01

X_t_euler = np.zeros((len(t_points), 2))
X_t_euler[0] = x0
for n in range(len(t_points) - 1):

X_t_euler[n+1] = X_t_euler[n] + h * A @ X_t_euler[n]

fig, ax = plt.subplots()
ax.plot(t_points, X_t[:, 0], label="$x(t)$ (exact)")
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ax.plot(t_points, X_t_euler[:, 0], label="$x(t)$ (Euler)", linestyle='--')
ax.plot(t_points, X_t[:, 1], label="$v(t)$ (exact)")
ax.plot(t_points, X_t_euler[:, 1], label="$v(t)$ (Euler)", linestyle='--')
ax.set_xlabel("Time")
ax.set_ylabel("$y(t)$")
ax.legend()

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")

Here we see how the Euler solution compares to the exact solution obtained via diagonaliza-
tion. Notice that using a large time step ℎ can cause the Euler solution to deviate significantly
from the exact decay (and may even diverge if |1 − 𝜆ℎ| ≥ 1).

6.4. Applying These Methods to the Schrödinger Equation

Time-Independent Hamiltonian

For a time-independent Hamiltonian 𝐻̂, the Schrödinger equation in vector form reads:

𝑖ℏ 𝑑c(𝑡)
𝑑𝑡 = 𝐻 c(𝑡).
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By setting 𝐴 = − 𝑖
ℏ𝐻, we recognize that this is a linear ODE. If 𝐻 (or 𝐴) is diagonalizable, its

eigen-decomposition yields an analytic solution. In quantum optics, these solutions describe
unitary time evolution of a closed system, often expressed as:

c(𝑡) = 𝑒− 𝑖
ℏ 𝐻𝑡 c(0).

6.4.1. Time-Dependent Hamiltonian

When 𝐻̂(𝑡) varies explicitly with time, one no longer has a simple exponential solution.
Instead, one can divide the time interval of interest into many small sub-intervals and ap-
proximate 𝐻̂(𝑡) as constant in each interval. This procedure is related to the time-ordered
exponential, but from a numerical perspective, we can simply implement a step-by-step in-
tegration (e.g., Euler, Runge–Kutta, or other higher-order methods) to construct |𝜓(𝑡𝑛+1)⟩
from |𝜓(𝑡𝑛)⟩.

6.4.2. Open Quantum Systems

In open quantum systems, the evolution of the density matrix 𝜌(𝑡) is often governed by the
master equation:

𝑑𝜌(𝑡)
𝑑𝑡 = ℒ[𝜌(𝑡)],

where ℒ is the so-called Liouvillian superoperator, which could contain both Hamiltonian
(coherent) parts and dissipative terms. Numerically, one can vectorize 𝜌(𝑡) (flattening the
matrix into a vector) and represent ℒ as a matrix ℒmat. Then, the equation again has the
familiar linear form:

𝑑r(𝑡)
𝑑𝑡 = ℒmat r(𝑡).

Hence, the same techniques (matrix diagonalization for analytical solutions, or time stepping
methods like Euler, Runge–Kutta, etc. for numerical solutions) remain valid.

6.5. Conclusion

In summary:

• An Ordinary Differential Equation (ODE) involves a function of one variable and its
derivatives.
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• When an ODE is linear and time-independent, one can analytically solve it by diago-
nalizing the system matrix.

• For more complicated (time-dependent or nonlinear) problems, numerical integration
methods such as the Euler method can be applied.

• The Euler method is conceptually simple but demands careful choice of time step to
ensure stability, particularly when the system matrix has eigenvalues with large negative
real parts or when fast decaying/oscillatory modes are present.

• These ideas are directly applicable to quantum mechanical systems such as the
Schrödinger equation or master equations for open systems. In the Schrödinger
equation, diagonalization corresponds to finding energy eigenstates and frequencies,
while in open quantum systems, vectorization plus diagonalization or numerical
iteration handles both coherent and dissipative dynamics.

Throughout the course, we will leverage these fundamental methods—both analytical tech-
niques (e.g., diagonalization) and numerical approaches (e.g., Euler and more sophisticated
solvers)—to simulate quantum systems efficiently and accurately.
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7. From Hamilton’s equations to the Liouville
equation in phase space

In the previous chapter we showed that many linear ordinary differential equations (ODEs)
that appear in quantum mechanics can be solved elegantly by writing them in matrix form
and diagonalising the matrix. In classical mechanics, however, the equations of motion

⎧{
⎨{⎩

̇𝑥 = 𝑝
𝑚,

̇𝑝 = −𝜕𝑉 (𝑥)
𝜕𝑥

(7.1)

become non‑linear as soon as the potential 𝑉 (𝑥) is non‑quadratic. Consequently the state
vector y = (𝑥, 𝑝)T no longer satisfies a linear system ẏ = 𝐴 y. As an example, we will consider
the Duffing-like oscillator with a quartic potential 𝑉 (𝑥) = 1

2𝑘𝑥2 + 𝑔𝑥4.

7.1. From Hamilton’s equations to Liouville’s continuity law

In Hamiltonian mechanics we usually track a single phase‑space point (𝑥(𝑡), 𝑝(𝑡)) by solving
the Hamilton equations in Equation 7.1. Yet many physical questions are statistical:

• Given ignorance about the exact initial state, how does a whole ensemble of points
evolve?

• Which quantities remain constant under the flow, and why?

Answering these requires an equation for a phase‑space density 𝜌(𝑥(𝑡), 𝑝(𝑡), 𝑡), not individ-
ual trajectories. The Liouville equation supplies precisely that.

The Liouville equation describes how a classical probability density function in phase space
evolves over time. It is a fundamental result in classical statistical mechanics and emerges
directly from Hamilton’s equations.

We aim to derive:
𝜕𝜌
𝜕𝑡 + {𝜌, 𝐻} = 0

where:
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• 𝜌(𝑥, 𝑝, 𝑡) is the probability density in phase space,
• 𝐻(𝑥, 𝑝) is the Hamiltonian of the system,
• {𝑓, 𝑔} = 𝜕𝑓

𝜕𝑥
𝜕𝑔
𝜕𝑝 − 𝜕𝑓

𝜕𝑝
𝜕𝑔
𝜕𝑥 denotes the Poisson bracket.

We begin with the canonical equations of motion for a 1D system:

{ ̇𝑥 = 𝜕𝐻
𝜕𝑝

̇𝑝 = −𝜕𝐻
𝜕𝑥

These equations describe the deterministic evolution of a point (𝑥(𝑡), 𝑝(𝑡)) in phase space.

Let 𝜌(𝑥, 𝑝, 𝑡) be the density of an ensemble of classical systems in phase space. To study how
this density evolves along the flow of the system, we compute the total derivative:

𝑑
𝑑𝑡𝜌(𝑥(𝑡), 𝑝(𝑡), 𝑡) = 𝜕𝜌

𝜕𝑡 + 𝜕𝜌
𝜕𝑥

𝑑𝑥
𝑑𝑡 + 𝜕𝜌

𝜕𝑝
𝑑𝑝
𝑑𝑡

Substituting Hamilton’s equations:

𝑑𝜌
𝑑𝑡 = 𝜕𝜌

𝜕𝑡 + 𝜕𝜌
𝜕𝑥

𝜕𝐻
𝜕𝑝 − 𝜕𝜌

𝜕𝑝
𝜕𝐻
𝜕𝑥 = 𝜕𝜌

𝜕𝑡 + {𝜌, 𝐻}

In Hamiltonian mechanics, the phase space flow is incompressible: it preserves the volume
element 𝑑𝑥 ∧ 𝑑𝑝. This implies that the density 𝜌 remains constant along each trajectory:

𝑑
𝑑𝑡𝜌(𝑥(𝑡), 𝑝(𝑡), 𝑡) = 0

Hence, we obtain:
𝜕𝜌
𝜕𝑡 + {𝜌, 𝐻} = 0 or 𝜕𝜌

𝜕𝑡 = {𝐻, 𝜌}

This is the Liouville equation.

7.2. Physical Interpretation

• The equation describes how a probability distribution in phase space flows under Hamil-
tonian evolution.

• The term {𝜌, 𝐻} encodes the flow of the distribution due to the system’s dynamics.
• The total number of systems is conserved, and the phase-space density is transported

without compression.

In short: Liouville’s theorem states that the probability density is constant along
the trajectories of the system in phase space.
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7.3. Discretizing the Liouville Operator with Finite Differences

In classical statistical mechanics, the Liouville equation governs the time evolution of a
probability density in phase space. To simulate this numerically, we can discretize phase
space and rewrite the Liouville operator as a sparse matrix, using finite difference ap-
proximations for derivatives.

For a 1D system with Hamiltonian 𝐻(𝑥, 𝑝) = 𝑝2

2𝑚 + 𝑉 (𝑥), we compute:

{𝐻, 𝜌} = 𝜕𝐻
𝜕𝑥

𝜕𝜌
𝜕𝑝 − 𝜕𝐻

𝜕𝑝
𝜕𝜌
𝜕𝑥 = 𝜕𝑉

𝜕𝑥
𝜕𝜌
𝜕𝑝 − 𝑝

𝑚
𝜕𝜌
𝜕𝑥

7.3.1. Discretizing Phase Space

We define a uniform grid of 𝑁𝑥 points over 𝑥 and 𝑁𝑝 points over 𝑝:

• 𝑥𝑖 = 𝑥0 + 𝑖 ⋅ Δ𝑥, for 𝑖 = 0, … , 𝑁𝑥 − 1
• 𝑝𝑗 = 𝑝0 + 𝑗 ⋅ Δ𝑝, for 𝑗 = 0, … , 𝑁𝑝 − 1

The phase space density 𝜌(𝑥𝑖, 𝑝𝑗) is stored as a 2D array or flattened into a vector ⃗𝜌 ∈
ℝ𝑁𝑥𝑁𝑝 .

We now define central difference matrices for the derivatives. Using second-order central
differences:

𝜕𝜌
𝜕𝑥∣

𝑥𝑖

≈ 𝜌(𝑥𝑖+1) − 𝜌(𝑥𝑖−1)
2Δ𝑥

This corresponds to a matrix 𝐷𝑥 ∈ ℝ𝑁𝑥×𝑁𝑥 with the stencil:

𝐷𝑥 = 1
2Δ𝑥

⎛⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
−1 0 1 ⋯ 0
0 −1 0 ⋯ 0
⋮ ⋮ ⋱ ⋱ 1
0 0 ⋯ −1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

(7.2)

Analogously:

𝐷𝑝 = 1
2Δ𝑝

⎛⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
−1 0 1 ⋯ 0
0 −1 0 ⋯ 0
⋮ ⋮ ⋱ ⋱ 1
0 0 ⋯ −1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

(7.3)

Both matrices are sparse, antisymmetric, and can be constructed with sparse matrix tools
of scipy.sparse.
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7.3.2. Building the Liouville Matrix Operator

Once we flatten the 2D array 𝜌(𝑥𝑖, 𝑝𝑗) into a vector ⃗𝜌 ∈ ℝ𝑁𝑥𝑁𝑝 , we define:

• 𝑃 = diag(𝑝𝑗/𝑚) of shape 𝑁𝑝 × 𝑁𝑝
• 𝜕𝑥𝑉 = diag(𝜕𝑥𝑉 (𝑥𝑖)) of shape 𝑁𝑥 × 𝑁𝑥

Then the full Liouville matrix 𝐿 becomes:

𝐿 = (𝐼𝑥 ⊗ 𝐷𝑝) ⋅ (𝜕𝑥𝑉 ⊗ 𝐼𝑝) − (𝐷𝑥 ⊗ 𝐼𝑝) ⋅ (𝐼𝑥 ⊗ 𝑃) (7.4)

Here:

• 𝐼𝑥, 𝐼𝑝: identity matrices on position and momentum spaces
• ⊗: Kronecker product

This is a sparse matrix acting on ⃗𝜌, and encodes the total effect of the classical flow in phase
space.

7.4. Time Evolution

We can evolve the discretized density using an ODE solver:

𝑑 ⃗𝜌
𝑑𝑡 = 𝐿 ⃗𝜌 (7.5)

Thus, we have reduced the problem to a linear ordinary differential equation (ODE) system,
which can be solved using the standard tools discussed in Chapter 6.

Before concluding this section, let us summarize some important points:

• The Liouville operator can be expressed as a sparse matrix using finite differences.
• Position and momentum derivatives are replaced by central difference matrices.
• The discretized Liouville equation is a linear ODE system for the phase-space density

vector.
• The phase space grid must be fine enough to resolve the flow.
• Boundary conditions (periodic, reflecting, absorbing) must be chosen according to the

physics.
• This approach is analogous to how quantum Hamiltonians are discretized into matrices

using finite differences.
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7.5. Running example: a quartic non-linear oscillator

Let us keep the algebra to a minimum and pick the potential

𝑉 (𝑥) = 1
2𝑘𝑥2 + 𝑔𝑥4,

with 𝑘 > 0 (harmonic part) and 𝑔 > 0 (hardening quartic term). Its Hamiltonian reads

𝐻(𝑥, 𝑝) = 𝑝2

2𝑚 + 𝑉 (𝑥).

Although the equations of motion are non‑linear, we could still integrate them numerically
using scipy.integrate.solve_ivp. However, this goes out of the scope of this course, as
we are interested in linear ordinary differential equations and their matrix equivalents. To
restore linearity we have to take a step back and study phase‑space functions rather than
individual trajectories.

We can now construct the matrix operators for the Liouville equation following Equa-
tion 7.2, Equation 7.3, and Equation 7.4. We can take advantage of the tools provided by
scipy.sparse to create the sparse matrices efficiently. We start by importing the necessary
libraries

import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
import scipy.sparse as sparse
import functools as ft

# Define a Gaussian function, useful for initial conditions
def gaussian(x, mu, sigma):

"""Generate a Gaussian function."""
norm_factor = 1 / (sigma * np.sqrt(2 * np.pi))
return np.exp(-0.5 * ((x - mu) / sigma) ** 2) * norm_factor

And then we define the grid and the operators for the phase space:

N_x = 150 # Number of grid points in position space
N_px = 150 # Number of grid points in momentum space
x_bound = 5 # Position space boundary
px_bound = 5 # Momentum space boundary

# Identity matrices for the different dimensions
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Ix = sparse.eye(N_x)
Ipx = sparse.eye(N_px)

x_list = np.linspace(-x_bound, x_bound, N_x)
px_list = np.linspace(-px_bound, px_bound, N_px)

dx = x_list[1] - x_list[0]
dpx = px_list[1] - px_list[0]

# Define the operators
x_op = sparse.diags(x_list)
px_op = sparse.diags(px_list)

# Use central differences for derivatives
d_x_op = sparse.diags([np.ones(N_x-1)/(2*dx),

-np.ones(N_x-1)/(2*dx)], offsets=[1, -1])
d_px_op = sparse.diags([np.ones(N_px-1)/(2*dpx),

-np.ones(N_px-1)/(2*dpx)], offsets=[1, -1])

# Create the full operator for the 4D phase space
x = ft.reduce(sparse.kron, [Ipx, x_op]).todia()
px = ft.reduce(sparse.kron, [px_op, Ix]).todia()

d_x = ft.reduce(sparse.kron, [Ipx, d_x_op]).todia()
d_px = ft.reduce(sparse.kron, [d_px_op, Ix]).todia()

We can now compute the time evolution defined by Equation 7.5 by using the Euler method
described in Section 6.3:

m = 0.5 # Mass of the particle
k = 2.0 # Spring constant
G = 0.15 # Nonlinear constant

dV_dx = k * x + 4 * G * x @ x @ x

# Liouville operator
L = dV_dx @ d_px - (px / m) @ d_x

t_list = np.linspace(0, 2, 100000)

# Initial state: we will use a Gaussian wave packet to avoid singularities
x_0 = gaussian(x_list, 1.0, np.sqrt(0.5))
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p_0 = gaussian(px_list, 0.1, np.sqrt(0.5))
rho_0 = np.kron(p_0, x_0)

x_t = np.zeros(t_list.shape[0])
v_t = np.zeros(t_list.shape[0])
E_t = np.zeros(t_list.shape[0])

x_t[0] = rho_0.dot(x.dot(rho_0))
v_t[0] = rho_0.dot(px.dot(rho_0)) / m
E_t[0] = (0.5 * m * v_t[0]**2 + 0.5 * k * x_t[0]**2 + G * x_t[0]**4)

rho_t = [rho_0.copy()]
for i, t in enumerate(t_list[1:], 1):

drho_dt = L @ rho_t[-1]

# Simple Euler integration
rho_t.append(rho_t[-1] + drho_dt * (t_list[1] - t_list[0]))

x_t[i] = rho_t[-1].dot(x.dot(rho_t[-1]))
v_t[i] = rho_t[-1].dot(px.dot(rho_t[-1])) / m
E_t[i] = (0.5 * m * v_t[i]**2 + 0.5 * k * x_t[i]**2 + G * x_t[i]**4)

And we can visualize the final phase space density 𝜌(𝑥, 𝑝, 𝑡) as a 2D plot:

fig, ax = plt.subplots()

fig.suptitle(r"Phase space density $\rho(x, p, t)$ evolution")

img = ax.pcolormesh(x_list, px_list, rho_t[-1].reshape(N_x, N_px),
shading="gouraud", rasterized=True,
vmin=-0.3, vmax=0.3, cmap="PuOr")

ax.set_xlabel("Position $x$")
ax.set_ylabel("Momentum $p_x$")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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It is instructive to compare the results of this simulation with the quantum case, as shown in
Appendix B. Notice how in the quantum case the Wigner (which is the quantum analogue of
the phase space density) can take negative values, while in the classical case the phase space
density is always non-negative.

55



8. Representing Quantum States and
Operators with NumPy

In quantum mechanics, states and observables are represented using the algebra of Hilbert
spaces. However, their infinite dimensions is incompatible with numerical simulations, that
always requires finite elements. Hence, we truncate Hilbert spaces to a finite size, allowing us
to run the quantum calculation on a computer. We can thus say that the whole problem of
numerical quantum mechanics is then reduced to a problem of linear algebra. However, the
intricated tensor structures of many-body Hilbert spaces requires also a powerful organization
of the code and an easy way to access relevant information.

In the following we consider a system with a Hilbert space of dimension 𝑑. The set of basis
states {|𝑘⟩ ∶ 𝑘 = 1, … , 𝑑} form an orthonormal basis, i.e., ⟨𝑘 ∣ 𝑘′⟩ = 𝛿𝑘,𝑘′ . In general there are
systems with an infinite dimensional Hilbert space, or systems, where the dimension is too
large to be tractable on a computer. In this case 𝑑 denotes the number of truncated basis
states, which is used in the numerical simulation. For a given choice of basis states we can
express any state vector and any operator as

|𝜓⟩ =
𝑑

∑
𝑘=1

𝑐𝑘|𝑘⟩, ̂𝐴 = ∑
𝑘,𝑙

𝐴𝑘𝑙|𝑘⟩⟨𝑙|,

where 𝑐𝑘 = ⟨𝑘 ∣ 𝜓⟩ and 𝐴𝑘𝑙 = ⟨𝑘| ̂𝐴|𝑙⟩. Therefore, in numerical simulations we represent states
by vectors and operators by matrices according to the mapping

|𝜓⟩ ↦ ⃗𝜓 =
⎛⎜⎜⎜⎜
⎝

𝑐1
𝑐2
⋮

𝑐𝑑

⎞⎟⎟⎟⎟
⎠

, ̂𝐴 ↦ 𝐴 =
⎛⎜⎜⎜⎜
⎝

𝐴11 𝐴12 … 𝐴1𝑑
𝐴21 𝐴22 … 𝐴2𝑑

⋮ ⋮ ⋱ ⋮
𝐴𝑑1 𝐴𝑑2 … 𝐴𝑑𝑑

⎞⎟⎟⎟⎟
⎠

.

The left and right operations of an operator on a vector then simply translate into matrix
vector multiplications,

̂𝐴|𝜓⟩ ↦ np.dot(A, psi), ⟨𝜓| ̂𝐴 ↦ np.dot(np.conj(psi.T), A),

where in Numpy np.conj(psi.T) is the hermitian transpose of a matrix or vector.
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8.1. Pauli Operators

The Pauli operators are fundamental in quantum mechanics, especially in the context of
qubits. They are represented as matrices in a two-dimensional Hilbert space, which is the
simplest non-trivial quantum system.

𝜎̂𝑥 ↦ ( 0 1
1 0 ) , 𝜎̂𝑦 ↦ ( 0 𝑖

−𝑖 0 ) , 𝜎̂𝑧 ↦ ( 1 0
0 −1 ) .

In Numpy we simply define the corresponding matrices

import numpy as np

sx = np.array([[0, 1], [1, 0]])
sy = np.array([[0, 1j], [-1j, 0]])
sz = np.array([[1, 0], [0, -1]])

8.2. Spin S Systems

A system with a fixed total spin 𝑆 is described by the three collective spin operators 𝑆𝑥, 𝑆𝑦, 𝑆𝑧,
which obey [𝑆𝑥, 𝑆𝑦] = 𝑖𝑆𝑧. The 𝑑 = 2𝑆 + 1 basis states can be labeled as |𝑠, 𝑚⟩, where
𝑚 = 𝑆, 𝑆 − 1, … , −𝑆. By introducing spin raising and lowering operators 𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦,
where 𝑆†

− = 𝑆+, all matrix elements can be obtained from the two relations

𝑆𝑧|𝑠, 𝑚⟩ = 𝑚|𝑠, 𝑚⟩, 𝑆−|𝑠, 𝑚⟩ = √𝑆(𝑆 + 1) − 𝑚(𝑚 − 1)|𝑠, 𝑚 − 1⟩ =∶ 𝑠𝑚
− |𝑠, 𝑚 − 1⟩ .

Explicitly,

̂𝑆𝑧 ↦ 𝑆𝑍 =
⎛⎜⎜⎜⎜
⎝

𝑆 0 … 0
0 𝑆 − 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … −𝑆

⎞⎟⎟⎟⎟
⎠

, ̂𝑆− ↦ 𝑆𝑀 =
⎛⎜⎜⎜⎜
⎝

0 0 … 0
𝑠𝑆/2

− 0 … 0
0 𝑠𝑆/2−1

− ⋱ ⋮
⋮ 0 … 0

⎞⎟⎟⎟⎟
⎠

.

All other operators can be obtained using 𝑆𝑥 = (𝑆+ + 𝑆−) /2 and 𝑆𝑦 = 𝑖 (𝑆+ − 𝑆−) /2. Ex-
ample for a spin 𝑆 = 1 system
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s = 1
d = int(2 * s + 1)

# Vector of the diagonal elements for the SZ operator
vecm = np.flip(np.arange(-s, s + 1))

SZ = np.diag(vecm, 0)

# Vector for SM operator (ladder down)
vec2 = vecm[:d-1] # remove the last entry
vec3 = np.sqrt(s * (s + 1) - vec2 * (vec2 - 1))
SM = np.diag(vec3, k=-1) # place vec3 in lower diagonal

# Construct SX and SY
SX = (SM + SM.T) / 2
SY = 1j * (SM.T - SM) / 2

Note that in Numpy the command A * B is a element-wise multiplication of two matrices,
while A @ B would implement the usual matrix multiplication.

8.3. Harmonic Oscillator

In a Hilbert space of dimension 𝑁 , quantum states can be represented as vectors, and oper-
ators as matrices. Here we demonstrate the destroy operator, 𝑎, which lowers the state by
one quantum number. For a detailed discussion on the quantum harmonic oscillator and the
bosonic annihilation operator, refer to Appendix A.

For a harmonic oscillator with number states |𝑛⟩ the only nonzero matrix elements of the
annihilation operator ̂𝑎 are given by ⟨𝑛 − 1| ̂𝑎|𝑛⟩ = √𝑛

̂𝑎 ↦ 𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 … ⋯ … 0
0 0

√
2 … ⋯ 0

0 0 0
√

3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋮ 0

√
𝑑 − 1

0 0 0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This operator acts on Fock states to lower their quantum number by one, with a factor of√𝑛, where 𝑛 is the quantum number of the initial state. In other words, ̂𝑎|𝑛⟩ = √𝑛|𝑛 − 1⟩.
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In the following code, we define the destroy operator by using NumPy, and we also define
some Fock states for demonstration.

In Numpy we use the command np.diag(v, k=r), which creates a diagonal matrix with the
elements of the vector v placed in the 𝑟-th diagonal (𝑟 = 0, ±1, ±2, …).

def destroy(d):
# creates a vector of the d-1 off-diagonal elements
v=np.sqrt( np.arange(d-1) )
# matrix with the elements of vec placed in the upper diagonal
a=np.diag(v,k=1)
return a

# Define the fock states
def fock(d, i):

res = np.zeros(d)
res[i] = 1
return res

d = 7
zero_state = fock(d, 0)
one_state = fock(d, 1)
two_state = fock(d, 2)
three_state = fock(d, 3)

destroy_operator = destroy(d)
destroy_operator

array([[0. , 0. , 0. , 0. , 0. ,
0. , 0. ],
[0. , 0. , 1. , 0. , 0. ,
0. , 0. ],
[0. , 0. , 0. , 1.41421356, 0. ,
0. , 0. ],
[0. , 0. , 0. , 0. , 1.73205081,
0. , 0. ],
[0. , 0. , 0. , 0. , 0. ,
2. , 0. ],
[0. , 0. , 0. , 0. , 0. ,
0. , 2.23606798],
[0. , 0. , 0. , 0. , 0. ,
0. , 0. ]])
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Other operators (e.g., ̂𝑎†, ̂𝑎† ̂𝑎) can be obtained by a hermitian transpose

̂𝑎† ↦ np.conj(a.T)

and matrix multiplications

̂𝑎† ̂𝑎 ↦ np.matmul(np.conj(a.T) , a) .

Note that in some cases this introduces truncation artifacts. For example, the matrix for
the operator 𝑀 = np.matmul(a, np.conj(a.T)) has a zero diagonal element 𝑀[𝑑, 𝑑] = 0
inherited from the matrix np.conj(a.T)), while the same operator constructed in a different
way, 𝑀2 = np.conj(a.T) * a + np.eye(d), does not. This can be avoided by constructing
this operator explicitly. Note that this type of truncation artifacts are related to the fact that
in a infinite Hilbert space Tr([𝑎, 𝑎†]) ≠ 0 (actually, striclty speaking, = ∞) as a consequence
of the canonical commutation relation. On the contrary, in a finite Hilbert space for any two
operators 𝑂1, 𝑂2, Tr([𝑂1, 𝑂2]) = 0. Taking a dimension 𝑑 large enough allows to make these
artifacts a negligible error in the whole computation.

8.3.1. Action of the Destroy Operator on a Fock State

The action of the destroy operator 𝑎 on a Fock state |𝑛⟩ lowers the state by one quantum
number, multiplied by a factor

√𝑛. For example, applying 𝑎 to the state |3⟩ yields:

̂𝑎|3⟩ =
√

3|2⟩

This demonstrates the lowering action of the destroy operator with a specific factor, dependent
on the quantum number of the state being acted upon.

# Apply the destroy operator on the one state
result_state = np.dot(destroy_operator, three_state)

print("Resulting State:")
result_state

Resulting State:

array([0. , 0. , 1.41421356, 0. , 0. ,
0. , 0. ])
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8.4. Partial Trace

In Section 4.1.4, we have already discussed the concept of tensor products. Here we will
introduce the partial trace, a crucial operation in quantum mechanics that allows us to
focus on a subsystem of a larger composite system.

The partial trace over a subsystem, say 𝐵, of a composite system 𝐴𝐵, mathematically
expresses as “tracing out” 𝐵, leaving the reduced state of 𝐴. For a bipartite state 𝜌𝐴𝐵, the
partial trace over 𝐵 is:

Tr𝐵( ̂𝜌𝐴𝐵) = ∑
𝑖∈ℋ𝐵

⟨𝑖| ̂𝜌𝐴𝐵|𝑖⟩

where {|𝑖⟩} forms a complete basis for subsystem 𝐵.

Let’s try it with an entangled Bell’s state between two qubits:

|𝜙+⟩ = 1√
2

(|0, 0⟩ + |1, 1⟩)

def ptrace(psi, subspace_to_keep, dim_subspace):
dim1, dim2 = dim_subspace

rho = np.outer(psi, psi.conj())

# Reshape rho to separate the subsystems' degrees of freedom
rho_reshaped = rho.reshape(dim1, dim2, dim1, dim2)

if subspace_to_keep == 1:
# Perform the trace over the second subsystem
traced_out = np.trace(rho_reshaped, axis1=1, axis2=3)

elif subspace_to_keep == 2:
# Perform the trace over the first subsystem
traced_out = np.trace(rho_reshaped, axis1=0, axis2=2)

else:
raise ValueError("subspace_to_keep must be either 1 or 2.")

return traced_out

# Bell state between two qubits
phi_plus = ( np.kron(fock(2, 1), fock(2, 1)) + np.kron(fock(2, 0), fock(2, 0)) ) / np.sqrt(2)

# Reduced density matrix of the first qubit
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rho_1 = ptrace(phi_plus, 1, (2, 2))
rho_1

array([[0.5, 0. ],
[0. , 0.5]])

8.5. Why QuTiP?

While NumPy and SciPy are powerful tools for numerical computations, they lack specific
functionalities for efficiently handling complex quantum systems. QuTiP is designed to fill
this gap, offering features such as:

• Easy manipulation and visualization of quantum objects.
• Support for operations on states and operators in different Hilbert spaces.
• Tools for dealing with composite systems, partial traces, and superoperators. It is like

to have the book “Quantum noise” (by Gardiner and Zoller) already implemented in
your laptop!

In the next chapters, we’ll explore how QuTiP simplifies these tasks, making it an invaluable
tool for quantum optics simulations.
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9. Introduction to QuTiP

The QuTiP package can be imported with

import qutip
import numpy as np

It can also be imported with the command from qutip import *, that automatically im-
ports all the QuTiP functions. However, here we use the first method, in order to explicitly
see the QuTiP functions.

qutip.about()

QuTiP: Quantum Toolbox in Python
================================
Copyright (c) QuTiP team 2011 and later.
Current admin team: Alexander Pitchford, Nathan Shammah, Shahnawaz Ahmed, Neill Lambert, Eric Giguère, Boxi Li, Simon Cross, Asier Galicia, Paul Menczel, and Patrick Hopf.
Board members: Daniel Burgarth, Robert Johansson, Anton F. Kockum, Franco Nori and Will Zeng.
Original developers: R. J. Johansson & P. D. Nation.
Previous lead developers: Chris Granade & A. Grimsmo.
Currently developed through wide collaboration. See https://github.com/qutip for details.

QuTiP Version: 5.1.1
Numpy Version: 2.2.6
Scipy Version: 1.15.3
Cython Version: 3.1.1
Matplotlib Version: 3.10.3
Python Version: 3.13.4
Number of CPUs: 4
BLAS Info: Generic
INTEL MKL Ext: None
Platform Info: Linux (x86_64)
Installation path: /opt/hostedtoolcache/Python/3.13.4/x64/lib/python3.13/site-packages/qutip
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Installed QuTiP family packages
-------------------------------

No QuTiP family packages installed.

================================================================================
Please cite QuTiP in your publication.
================================================================================
For your convenience a bibtex reference can be easily generated using `qutip.cite()`

9.1. Quantum Operators

Quantum operators play a crucial role in the formulation of quantum mechanics, representing
physical observables and operations on quantum states. In QuTiP, operators are represented
as Qobj instances, just like quantum states. This section introduces the creation and manip-
ulation of quantum operators.

9.1.1. Creating Operators

Operators in quantum mechanics can represent measurements, such as position or momentum,
and transformations, such as rotation. Let’s see how we can define some common operators
in QuTiP.

9.1.1.1. The Annihilation Operator of the Quantum Harmonic oscillator

The harmonic oscillator is a fundamental model in quantum mechanics for understanding
various physical systems. Its quantization leads to the concept of creation and annihilation
operators, which respectively increase and decrease the energy of the system by one quantum
of energy.

The annihilation operator, often denoted by ̂𝑎, acts on a quantum state to reduce its quantum
number. The action of ̂𝑎 on a state |𝑛⟩ is defined as:

̂𝑎|𝑛⟩ = √𝑛|𝑛 − 1⟩

Here, |𝑛⟩ represents a quantum state with 𝑛 quanta of energy (also known as a Fock state),
and

√𝑛 is the normalization factor. The matrix representation of the annihilation operator
in an 𝑑-dimensional Hilbert space is given by an upper triangular matrix with the square
roots of natural numbers as its off-diagonal elements.
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# Define the annihilation operator for d-dimensional Hilbert space
d = 7

a = qutip.destroy(d)

print("Annihilation operator (a) for d=7:")
a

Annihilation operator (a) for d=7:

Quantum object: dims=[[7], [7]], shape=(7, 7), type='oper', dtype=Dia, isherm=False
Qobj data =
[[0. 1. 0. 0. 0. 0.
0. ]
[0. 0. 1.41421356 0. 0. 0.
0. ]
[0. 0. 0. 1.73205081 0. 0.
0. ]
[0. 0. 0. 0. 2. 0.
0. ]
[0. 0. 0. 0. 0. 2.23606798
0. ]
[0. 0. 0. 0. 0. 0.
2.44948974]
[0. 0. 0. 0. 0. 0.
0. ]]

9.1.1.2. Pauli Matrices

The Pauli matrices are fundamental in the study of quantum mechanics, representing the
spin operators for a spin-1/2 particle and quantum two-level systems.

𝜎𝑥 = (0 1
1 0) , 𝜎𝑦 = (0 −𝑖

𝑖 0 ) , 𝜎𝑧 = (1 0
0 −1)

We can define these matrices in QuTiP as follows:
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sigma_x = qutip.sigmax()
sigma_y = qutip.sigmay()
sigma_z = qutip.sigmaz()

print("Sigma X:")
display(sigma_x)
print("\n")
print("Sigma Y:")
display(sigma_y)
print("\n")
print("Sigma Z:")
sigma_z

Sigma X:

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', dtype=CSR, isherm=True
Qobj data =
[[0. 1.]
[1. 0.]]

Sigma Y:

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', dtype=CSR, isherm=True
Qobj data =
[[0.+0.j 0.-1.j]
[0.+1.j 0.+0.j]]

Sigma Z:

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', dtype=CSR, isherm=True
Qobj data =
[[ 1. 0.]
[ 0. -1.]]
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9.1.2. Operator Functions and Operations

QuTiP supports various operations on operators, including addition, multiplication (both
scalar and matrix), and the commutator. These operations are essential for constructing
Hamiltonians, calculating observables, and more.

9.1.2.1. Example: Commutator of Pauli Matrices

The commutator of two operators 𝐴 and 𝐵 is defined as [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. Let’s calculate
the commutator of 𝜎𝑥 and 𝜎𝑦.

commutator_xy = qutip.commutator(sigma_x, sigma_y)
print("Commutator of Sigma X and Sigma Y:")
display(commutator_xy)
commutator_xy == 2j * sigma_z

Commutator of Sigma X and Sigma Y:

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', dtype=CSR, isherm=False
Qobj data =
[[0.+2.j 0.+0.j]
[0.+0.j 0.-2.j]]

True

9.2. Quantum States

Quantum states describe the state of a quantum system. In QuTiP, states are represented
again as Qobj instances. This section focuses on the representation and manipulation of
quantum states.

9.2.1. Fock States

The most basic quantum states are the fock states, often denoted as |𝑛⟩ (with 𝑛 ∈ ℕ). Let’s
see how we can create these in QuTiP.
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9.2.2. Superposition States

Quantum mechanics allows particles to be in a superposition of states. Let’s create a super-
position state.

|𝜓⟩ = 1√
2

(|0⟩ + |1⟩)

fock_0 = qutip.fock(d, 0) # Fock state |0>
fock_1 = qutip.fock(d, 1) # Fock state |1>

# Creating a superposition state
superposition_state = (fock_0 + fock_1).unit() # Normalize the state

print("Superposition state:")
superposition_state

Superposition state:

Quantum object: dims=[[7], [1]], shape=(7, 1), type='ket', dtype=Dense
Qobj data =
[[0.70710678]
[0.70710678]
[0. ]
[0. ]
[0. ]
[0. ]
[0. ]]

9.2.3. Coherent States

Coherent states in QuTiP represent quantum states closest to classical waves, defined as

|𝛼⟩ = 𝑒−|𝛼|2/2
∞

∑
𝑛=0

𝛼𝑛
√

𝑛!
|𝑛⟩ ,

with minimal uncertainty.

The coherent state is an eigenstate of the annihilation operator

̂𝑎|𝛼⟩ = 𝛼|𝛼⟩

68



Warning!

Remember that every Qobj lives in a truncated Hilbert space. If the 𝛼 value is too large,
the state will become a non-physical state because it will touch the high energy levels
of the truncated Hilbert space.

alpha = 0.8
coherent_state = qutip.coherent(d, alpha)

coherent_state

Quantum object: dims=[[7], [1]], shape=(7, 1), type='ket', dtype=Dense
Qobj data =
[[0.72614904]
[0.58091919]
[0.32861796]
[0.1517784 ]
[0.06073653]
[0.02159193]
[0.00767346]]

Let’s compute the fidelity between |𝛼⟩ and ̂𝑎|𝛼⟩/𝛼.

qutip.fidelity(a * coherent_state / alpha, coherent_state)

np.float64(0.9999661194274998)

9.2.4. Spin States

qutip.spin_state(0.5, -1)

Quantum object: dims=[[2], [1]], shape=(2, 1), type='ket', dtype=Dense
Qobj data =
[[0.]
[1.]]
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9.2.5. Density Matrices

Quantum states can also be represented using density matrices, which are useful for describing
mixed states.

9.2.5.1. Creating a Density Matrix

Let’s convert our superposition state into a density matrix.

# Creating a density matrix from a state
density_matrix = superposition_state * superposition_state.dag() # Outer product

print("Density matrix of the superposition state:")
density_matrix

Density matrix of the superposition state:

Quantum object: dims=[[7], [7]], shape=(7, 7), type='oper', dtype=Dense, isherm=True
Qobj data =
[[0.5 0.5 0. 0. 0. 0. 0. ]
[0.5 0.5 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. ]]

9.2.6. Partial Trace

The partial trace over a subsystem, say 𝐵, of a composite system 𝐴𝐵, mathematically
expresses as “tracing out” 𝐵, leaving the reduced state of 𝐴. For a bipartite state 𝜌𝐴𝐵, the
partial trace over 𝐵 is:

Tr𝐵( ̂𝜌𝐴𝐵) = ∑
𝑖∈ℋ𝐵

⟨𝑖| ̂𝜌𝐴𝐵|𝑖⟩

where {|𝑖⟩} forms a complete basis for subsystem 𝐵.

Let’s try it with an entangled Bell’s state between two qubits:
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|𝜙+⟩ = 1√
2

(|0, 0⟩ + |1, 1⟩)

# Bell state between two qubits
phi_plus = ( qutip.tensor(qutip.spin_state(1/2, -1), qutip.spin_state(1/2, -1)) + qutip.tensor(qutip.spin_state(1/2, 1), qutip.spin_state(1/2, 1)) ).unit()

# Reduced density matrix of the first qubit
rho_1 = qutip.ptrace(phi_plus, 1)
rho_1

Quantum object: dims=[[2], [2]], shape=(2, 2), type='oper', dtype=Dense, isherm=True
Qobj data =
[[0.5 0. ]
[0. 0.5]]

We now apply the partial trace to a more complicated state, that is composed by two bosonic
modes and two spins |𝑗1, 𝑚1⟩ and |𝑗2, 𝑚2⟩, with 𝑗1 = 1 and 𝑗2 = 1

2 , 𝑚1 = 0, and 𝑚2 = 1.

j1 = 1
j2 = 1/2
m1 = 0
m2 = 1

psi = qutip.tensor(qutip.fock(d, 3), qutip.fock(d, 1), qutip.spin_state(j1, 0), qutip.spin_state(j2, 1))

# Trace only the second spin state
rho_0 = qutip.ptrace(psi, [0, 1, 2])
display(rho_0)

# Trace only the first bosonic mode and the second spin state
rho_1 = qutip.ptrace(psi, [1, 2])
display(rho_1)

# Trace all except the second bosonic mode
rho_2 = qutip.ptrace(psi, [1])
rho_2
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Quantum object: dims=[[7, 7, 3], [7, 7, 3]], shape=(147, 147), type='oper', dtype=Dense, isherm=True
Qobj data =
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]

Quantum object: dims=[[7, 3], [7, 3]], shape=(21, 21), type='oper', dtype=Dense, isherm=True
Qobj data =
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

Quantum object: dims=[[7], [7]], shape=(7, 7), type='oper', dtype=Dense, isherm=True
Qobj data =
[[0. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]
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[0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0.]]

9.3. Eigenstates and Eigenvalues

The eigenstates and eigenvalues of a system or an operator provide crucial insights into its
properties. Let’s explore how to calculate these in QuTiP.

# Example: Eigenstates and eigenvalues of Pauli Z
eigenvalues, eigenstates = sigma_z.eigenstates()

print("Eigenvalues of Sigma Z:")
display(eigenvalues)
print("\n")
print("Eigenstates of Sigma Z:")
display(eigenstates)

Eigenvalues of Sigma Z:

array([-1., 1.])

Eigenstates of Sigma Z:

array([Quantum object: dims=[[2], [1]], shape=(2, 1), type='ket', dtype=Dense
Qobj data =
[[ 0.]
[-1.]] ,
Quantum object: dims=[[2], [1]], shape=(2, 1), type='ket', dtype=Dense
Qobj data =
[[-1.]
[-0.]] ],

dtype=object)
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9.4. Computing Expectation Values

The expectation value of an operator provides insight into the average outcome of a quantum
measurement. For a quantum state |𝜓⟩ and an operator 𝑂̂, the expectation value is given
by:

⟨𝑂̂⟩ = ⟨𝜓|𝑂̂|𝜓⟩

Expectation values are crucial for predicting measurable quantities in quantum mechanics.
Let’s compute the expectation value of the number operator 𝑛̂ = ̂𝑎† ̂𝑎 for a coherent state,
which represents a quantum state closest to a classical harmonic oscillator.

# Define the coherent state |psi> with alpha=2
alpha = 0.8
psi = qutip.coherent(d, alpha)

# Define the number operator n = a.dag() * a
n = a.dag() * a

# Compute the expectation value of n for the state |psi>
expectation_value_n = qutip.expect(n, psi)

print("Expectation value of the number operator for |psi>:")
display(expectation_value_n)
print("\n")
print("The squared modulus of alpha is:")
display(abs(alpha) ** 2)

Expectation value of the number operator for |psi>:

0.639996733025295

The squared modulus of alpha is:

0.6400000000000001
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9.5. A complete example: the Quantum Harmonic Oscillator

In Appendix A we have already defined the quantum harmonic oscillator, which is a fun-
damental model in quantum mechanics. In the energy eigenbasis, the quantum harmonic
oscillator is described by the Hamiltonian

𝐻̂ = 𝜔 ̂𝑎† ̂𝑎 ,

where 𝜔 is the resonance frequency and ̂𝑎 is the bosonic annihilation operator. In this basis,
the Hamiltonian is indeed diagonal, with eigenvalues 𝐸𝑛 = 𝜔𝑛, where 𝑛 ∈ ℕ.

N = 120 # Hilbert space cutoff
w = 1 # Resonance frequency of the harmonic oscillator

a = qutip.destroy(N)

H = w * a.dag() * a

H

Quantum object: dims=[[120], [120]], shape=(120, 120), type='oper', dtype=Dia, isherm=True
Qobj data =
[[ 0. 0. 0. ... 0. 0. 0.]
[ 0. 1. 0. ... 0. 0. 0.]
[ 0. 0. 2. ... 0. 0. 0.]
...
[ 0. 0. 0. ... 117. 0. 0.]
[ 0. 0. 0. ... 0. 118. 0.]
[ 0. 0. 0. ... 0. 0. 119.]]

9.6. Passing in the position basis

From the classical point of view, we are used to describe the harmonic oscillator in terms of
position and momentum. In quantum mechanics, we can also express the system in terms
of the position and momentum operators, which are related to the annihilation and creation
operators as follows (ℏ = 1):
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̂𝑥 = 1√
2𝑚𝜔 ( ̂𝑎 + ̂𝑎†) ,

̂𝑝 = 𝑖√𝑚𝜔
2 ( ̂𝑎† − ̂𝑎) .

We first check that

[ ̂𝑥, ̂𝑝] = 𝑖

m = 0.5

x = (a + a.dag()) / np.sqrt(2 * m * w)
p = - 1j * (a - a.dag()) * np.sqrt(m * w / 2)

qutip.commutator(x, p)

Quantum object: dims=[[120], [120]], shape=(120, 120), type='oper', dtype=Dia, isherm=False
Qobj data =
[[0. +1.j 0. +0.j 0. +0.j ... 0. +0.j 0. +0.j 0. +0.j]
[0. +0.j 0. +1.j 0. +0.j ... 0. +0.j 0. +0.j 0. +0.j]
[0. +0.j 0. +0.j 0. +1.j ... 0. +0.j 0. +0.j 0. +0.j]
...
[0. +0.j 0. +0.j 0. +0.j ... 0. +1.j 0. +0.j 0. +0.j]
[0. +0.j 0. +0.j 0. +0.j ... 0. +0.j 0. +1.j 0. +0.j]
[0. +0.j 0. +0.j 0. +0.j ... 0. +0.j 0. +0.j 0.-119.j]]

We now numerically diagonalize the position operator ̂𝑥, such that ̂𝑈† ̂𝑥 ̂𝑈 is diagonal. Then
we plot the eigenstates of the quantum harmonic oscillator in the new basis, obtained with

|𝜙𝑛(𝑥)⟩ = ̂𝑈†|𝜓𝑛⟩

import matplotlib.pyplot as plt

E, T = x.eigenstates()

U = np.zeros((N, N)).astype(np.complex128)
for i in range(N):

U[:,i] = T[i].full().flatten()
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U = qutip.Qobj(U)

xlist = ( U.dag() * x * U ).diag()
dx = xlist[1] - xlist[0]

# Harmonic potential
V = w**2 / 2 * xlist**2

fig, ax = plt.subplots()

ax.plot(xlist, V, color="black", ls="--", lw=2)
for i in range(5):

factor = 5 # The purpose of this factor is to only make more visible the states
ax.plot(xlist, factor * np.abs( (U.dag() * qutip.fock(N, i)).full() )**2 + i * w + w/2, lw=2)

ax.set_xlabel(r"$x$")
ax.set_xlim(-5, 5)
ax.set_ylim(0, 5)

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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10. Closed Quantum Systems in QuTiP: The
Schrödinger equation

import numpy as np
import matplotlib.pyplot as plt
from qutip import *

10.1. From wavefunctions to the Schrödinger equation in
configuration space

In Chapter 7 we moved from Hamilton’s equations for a single point to Liouville’s equa-
tion for an ensemble. Quantum mechanics follows a similar path, replacing phase-space den-
sities with wavefunctions (or density operators). We now show this parallelism in detail.

10.1.1. From a single wavepacket to the quantum continuity law

A non-relativistic quantum system in one dimension is described by a complex wavefunction
𝜓(𝑥, 𝑡). Its probability density and current are

𝜌(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2, 𝑗(𝑥, 𝑡) = ℏ
𝑚 ℑ[𝜓∗(𝑥, 𝑡) 𝜕𝑥𝜓(𝑥, 𝑡)].

Starting from the time-dependent Schrödinger equation

𝑖ℏ 𝜕𝑡𝜓(𝑥, 𝑡) = 𝐻̂ 𝜓(𝑥, 𝑡) with 𝐻̂ = − ℏ2

2𝑚 𝜕2
𝑥 + 𝑉 (𝑥) (10.1)

and its complex conjugate, a short calculation yields the continuity equation

𝜕𝑡𝜌 + 𝜕𝑥𝑗 = 0, (10.2)

which plays the same role as Liouville’s incompressibility condition: probability is trans-
ported in configuration space without being created or destroyed.
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10.1.2. The Schrödinger equation as a linear ODE in Hilbert space

While Equation 10.1 is a partial differential equation, it is linear in 𝜓, exactly like the matrix
ODE ẏ = 𝐴y used for classical linear systems. Written in Dirac notation

𝑖ℏ 𝑑
𝑑𝑡 |𝜓(𝑡)⟩ = 𝐻̂ |𝜓(𝑡)⟩,

the resemblance becomes explicit: replace the classical matrix 𝐴 by the quantum Hamilto-
nian operator 𝐻̂ and the state vector y by a ket |𝜓⟩.
For statistical mixtures one introduces the density operator ̂𝜌 and obtains the von Neu-
mann equation

𝑖ℏ 𝜕𝑡 ̂𝜌 = [𝐻̂, ̂𝜌], (10.3)

a direct quantum counterpart of the Liouville equation in Equation 7.5.

With these ingredients we now possess a one-to-one map between the classical Liouville
formulation and the quantum Schrödinger formulation, both expressible as sparse
linear ODEs ready for numerical treatment. Let’s consider a simple example of a harmonic
oscillator, which is described by the Hamiltonian

𝐻̂ = ℏ𝜔 ̂𝑎† ̂𝑎 ,

where ̂𝑎 and ̂𝑎† are the annihilation and creation operators, respectively, and 𝜔 is the angular
frequency of the oscillator.

N = 120 # Number of Fock states
w = 1 # Angular frequency of the oscillator

a = destroy(N) # Annihilation operator
H = w * a.dag() * a # Hamiltonian of the harmonic oscillator

H

Quantum object: dims=[[120], [120]], shape=(120, 120), type='oper', dtype=Dia, isherm=True
Qobj data =
[[ 0. 0. 0. ... 0. 0. 0.]
[ 0. 1. 0. ... 0. 0. 0.]
[ 0. 0. 2. ... 0. 0. 0.]
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...
[ 0. 0. 0. ... 117. 0. 0.]
[ 0. 0. 0. ... 0. 118. 0.]
[ 0. 0. 0. ... 0. 0. 119.]]

In QuTip, the Schrödinger equation is solved with the function sesolve, which stands for
“Schrödinger equation solver”.

alpha = 3 # Coherence of the initial state

# We start from a coherent state the most classic-like state
psi0 = coherent(N, alpha)

# List of the times for the time evolution
tlist = np.linspace(0, 2 * 2*np.pi/w, 100)

e_ops = [H, a + a.dag()]

sol = sesolve(H, psi0, tlist, e_ops=e_ops)

10.2. Plot the expectation values

We can access to the expectation values with the command sol.expect[i], where i is the
index of the 𝑖-th operator for which we want to calculate te expectation value as a function
of time.

fig, ax = plt.subplots()

ax.plot(tlist, sol.expect[0], label=r"$\langle \hat{H} \rangle$", lw=2)
ax.plot(tlist, sol.expect[1], label=r"$\langle \hat{a} + \hat{a}^\dagger \rangle$", lw=2)
ax.legend()
ax.set_xlabel(r"$t$")
ax.set_xlim(tlist[0], tlist[-1])
ax.set_ylim(None, 16)

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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10.3. Access directly to the evolution of the state

We can also access directly to the wavefunction at each tlist. This can be done by simply
calling sol.states to the solver without the e_ops operators.

To check this feature, let’s see if after 10 cycles we get still the initial state, by calculating
the fidelity

⟨𝜓 (𝑡 = 10𝑇 ) |𝜓 (𝑡 = 0)⟩

where 𝑇 = 2𝜋
𝜔 .

sol = sesolve(H, psi0, tlist)

sol.states[0].dag() * sol.states[-1]

(0.999999999991156-6.853062359472892e-07j)

We then switch to the position eigenbasis. Thus, we need to diagonalize the position operator.
This in general involves the Laguerre functions, but here we limit ourselves to numerically
diagonalize the position operator.
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We now show the wavefunctions in the position basis at three different times: 𝑡0, 𝑡1 and 𝑡2,
with

𝑡0 = 0 , 𝑡1 = 𝜋
𝜔 , 𝑡2 = 2𝜋

𝜔 ,

showing the exact periodicity of this system.

idx_t0 = 0
idx_t1 = np.where(tlist >= np.pi/w)[0][0]
idx_t2 = np.where(tlist >= 2*np.pi/w)[0][0]

psi0_x = U.dag() * sol.states[idx_t0]
psi1_x = U.dag() * sol.states[idx_t1]
psi2_x = U.dag() * sol.states[idx_t2]

# We define the potential for the harmonic oscillator
V = 0.5 * m * w**2 * xlist**2

fig, ax = plt.subplots()

ax.plot(xlist, 700 * np.abs(psi0_x.full())**2,
label=r"$\vert \langle \psi (t_0) \vert \psi (t_0) \rangle \vert^2$", lw=2)

ax.plot(xlist, 700 * np.abs(psi1_x.full())**2,
label=r"$\vert \langle \psi (t_1) \vert \psi (t_1) \rangle \vert^2$", ls="--", lw=2)

ax.plot(xlist, 700 * np.abs(psi2_x.full())**2,
label=r"$\vert \langle \psi (t_2) \vert \psi (t_2) \rangle \vert^2$", ls="-.", lw=2)

ax.plot(xlist, V, color="black", ls="--")
ax.legend()
ax.set_xlabel(r"$x$")
ax.set_xlim(xlist[0], xlist[-1])
ax.set_ylim(0, 120)

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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We can also export an animation, showing more easily the time evolution of the state

from matplotlib.animation import FuncAnimation
from IPython.display import HTML

plt.rcParams.update({'font.size': 8})
fig, ax = plt.subplots(figsize=(4.6, 2.8))

line, = ax.plot(xlist, 700 * np.abs(psi0_x.full())**2, lw=2)
ax.plot(xlist, V, color="black", ls="--")
ax.set_xlabel(r"$x$")
ax.set_xlim(xlist[0], xlist[-1])
ax.set_ylim(0, 120)

plt.close(fig) # Otherwise the static figure also appears

def update(frame):
psi_t = U.dag() * sol.states[frame]
line.set_ydata( 700 * np.abs(psi_t.full())**2 )
return line,

fps = 25
ani = FuncAnimation(fig, update, frames=len(tlist), blit=True, interval=1000 / fps)

HTML(ani.to_jshtml())
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Unable to display output for mime type(s): text/html
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11. Open Dynamics in QuTiP: The Master
Equation

In Chapter 10, we discussed the evolution of closed quantum systems, where the dynamics is
governed by the Schrödinger equation. The evolution of the state vector |𝜓(𝑡)⟩ is given by:

𝑑 |𝜓(𝑡)⟩
𝑑𝑡 = − 𝑖

ℏ𝐻̂ |𝜓(𝑡)⟩

where 𝐻̂ is the Hamiltonian operator of the system. The solution to this equation leads to
unitary evolution. In contrast to the closed case, open quantum systems interact with their
environment, leading to non-unitary evolution described by the Master equation:

𝑑 ̂𝜌
𝑑𝑡 = − 𝑖

ℏ[𝐻̂, ̂𝜌] + ∑
𝑘

(𝐿̂𝑘 ̂𝜌𝐿̂†
𝑘 − 1

2{𝐿̂†
𝑘𝐿̂𝑘, ̂𝜌})

Here, ̂𝜌 represents the density matrix of the system, 𝐿̂𝑘 are the Lindblad operators represent-
ing different dissipation processes. and { ̂𝐴, 𝐵̂} = ̂𝐴𝐵̂ + 𝐵̂ ̂𝐴 is the anti-commutator between
the operators ̂𝐴 and 𝐵̂.

11.1. Example: the damped harmonic oscillator

We can use the Master equation to study the dynamics of a damped harmonic oscillator. The
Hamiltonian for a harmonic oscillator is given by:

𝐻̂ = 𝜔0 ̂𝑎† ̂𝑎

where ̂𝑎 and ̂𝑎† are the annihilation and creation operators, respectively, and 𝜔0 is the angular
frequency of the oscillator.

85



import numpy as np
from qutip import *

# Parameters
N = 30 # Number of Fock states
omega_0 = 1.0 # Angular frequency of the oscillator

a = destroy(N) # Annihilation operator

# Hamiltonian
H = omega_0 * a.dag() * a

To model the damping, we can introduce a Lindblad operator that represents the interaction
with the environment. In the case of the interaction with a zero-temperature bath, the
Lindblad operator can be defined as:

𝐿̂ = √𝛾 ̂𝑎

where 𝛾 is the damping rate. Let’s now initialize the system in a coherent state and evolve
it using the Master equation. We will also visualize the evolution of the position and energy
expectation values over time.

# Damping rate
gamma = 0.1

# Lindblad operator
L = np.sqrt(gamma) * a

# Initial state: coherent state
alpha = 3.0
psi_0 = coherent(N, alpha)

tlist = np.linspace(0, 50, 500)

# Solve the Master equation
result = mesolve(H, psi_0, tlist, [L], e_ops=[a.dag() * a, a + a.dag()])
result

<Result
Solver: mesolve
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Solver stats:
method: 'scipy zvode adams'
init time: 0.0001773834228515625
preparation time: 0.0002970695495605469
run time: 0.26758480072021484
solver: 'Master Equation Evolution'
num_collapse: 1

Time interval: [0.0, 50.0] (500 steps)
Number of e_ops: 2
State not saved.

>

11.1.1. Plotting the results

import matplotlib.pyplot as plt

# Plot the expectation values
fig, ax = plt.subplots()

ax.plot(tlist, result.expect[0], label=r"Energy $\langle \hat{H} \rangle$")
ax.plot(tlist, result.expect[1].real, label=r"Position $\langle \hat{x} \rangle$")
ax.set_xlabel(r"Time $t$")
ax.set_ylabel("Expectation values")
ax.legend()
ax.set_title("Damped Harmonic Oscillator Dynamics")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close()
SVG("_tmp_fig.svg")
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11.2. Time-dependent parameters: the case of logical quantum
gates

In classical computing, logical gates such as AND, OR, and NOT process bits (0 or 1) to
perform basic operations. For example:

• AND outputs 1 only if both inputs are 1.
• OR outputs 1 if at least one input is 1.
• NOT inverts its input bit.

These gates form the building blocks of all classical algorithms and digital circuits.

Quantum computing generalizes this idea by using qubits, which can exist in superpositions
of 0 and 1. Quantum gates act on these superposed states via time-dependent Hamiltoni-
ans, enabling phenomena like entanglement and interference. This richer behaviour unlocks
powerful algorithms (e.g., Shor’s factoring, Grover’s search) that have no efficient classical
equivalent.

As an example, we consider a combination of gates that generates a bell state

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩). (11.1)

To achieve this, we can use a sequence of quantum gates:
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1. Hadamard gate: Applies a Hadamard gate to the first qubit, transforming |0⟩ into
1√
2(|0⟩ + |1⟩).

2. CNOT gate: Applies a controlled-NOT gate, where the first qubit controls the second.
This flips the second qubit if the first is in state |1⟩.

Each gate can be represented by a time-dependent Hamiltonian. For example, the Hadamard
gate can be implemented using a Hamiltonian

𝐻̂(1)
H (𝑡0, 𝑡) = Θ(𝑡 − 𝑡0)Θ(𝑡0 + 𝜋/2 − 𝑡) 1√

2
(𝜎̂(1)

𝑥 − 𝜎̂(1)
𝑧 )

where Θ(𝑡) is the Heaviside step function, and 𝜎̂(1)
𝑥 and 𝜎̂(1)

𝑧 are the Pauli operators acting on
the first qubit. The Heaviside function ensures that the Hamiltonian is non-zero only during
the time interval [𝑡0, 𝑡0 + 𝜋/2], where 𝑡0 is the time at which the gate is applied.

The CNOT gate can be implemented using a Hamiltonian that couples the two qubits

𝐻̂CNOT(𝑡0, 𝑡) = Θ(𝑡 − 𝑡0)Θ(𝑡0 + 𝜋/2 − 𝑡) (𝟙̂ + 𝜎̂(1)
𝑧 ) ⊗ (𝟙̂ − 𝜎̂(2)

𝑥 )

where 𝜎̂(2)
𝑥 acts on the second qubit, and 𝟙̂ is the identity operator. The Heaviside function

again ensures that the Hamiltonian is non-zero only during the time interval [𝑡0, 𝑡0 + 𝜋/2].
In absence of losses, the output state after applying these gates is exactly the Bell state |Φ+⟩
defined in Equation 11.1. However, in a realistic scenario, we need to account for the effects of
decoherence and dissipation, which can be modeled using the Master equation. This poses a
challenge for quantum computing, as the coherence of the qubits must be maintained during
the gate operations to ensure the correct output state.
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To simulate the effects of decoherence, we consider the case where the qubits are in interaction
with a finite-temperature environment, which can lead to energy dissipation and dephasing.
In this case, the Master equation can be used to describe the dynamics of the system. We
can introduce a Lindblad operator that represents the interaction with the environment. For
example, we can use a Lindblad operator that describes the decay of the qubits:

𝐿̂1 = √𝛾(𝑛th + 1)𝜎̂(1)
− , 𝐿̂2 = √𝛾(𝑛th + 1)𝜎̂(2)

−

𝐿̂3 = √𝛾𝑛th𝜎̂(1)
+ , 𝐿̂4 = √𝛾𝑛th𝜎̂(2)

+

where 𝜎̂(𝑖)
+ and 𝜎̂(𝑖)

− are the raising and lowering operators for the 𝑖-th qubit, respectively, 𝑛th
is the average number of thermal excitations in the environment, and 𝛾 is the decay rate. The
Lindblad operators describe both energy dissipation (via 𝜎̂−) and thermal excitation (via 𝜎̂+)
of the qubits.

We can use the ability of QuTiP to define time-dependent Hamiltonians to simulate the
evolution of the system under the influence of these gates and the Lindblad operators.

def heaviside(t, t0):
return t >= t0

def hadamard_coeff(t):
t0 = 0 # Start time of the Hadamard gate
return heaviside(t, t0) * heaviside(t0 + np.pi / 2, t)

def cnot_coeff(t):
t0 = np.pi / 2 # Start time of the CNOT gate
return heaviside(t, t0) * heaviside(t0 + np.pi / 2, t)

sm1 = tensor(sigmam(), qeye(2)) # Lowering operator for qubit 1
sm2 = tensor(qeye(2), sigmam()) # Lowering operator for qubit 2
sx1 = tensor(sigmax(), qeye(2)) # Pauli X for qubit 1
sz1 = tensor(sigmaz(), qeye(2)) # Pauli Z for qubit 1
sx2 = tensor(qeye(2), sigmax()) # Pauli X for qubit 2

# Parameters
gamma = 0.1 # Decay rate
T = 0.1 # Temperature (arbitrary units)
n_th = 1 / (np.exp(1 / T) - 1) # Average number of thermal excitations

# Hadamard gate Hamiltonian
H_hadamard = (sx1 - sz1) / np.sqrt(2)
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# CNOT gate Hamiltonian
H_cnot = (1 + sz1) * (1 - sx2) / 2

# Time-dependent Hamiltonian
H = [[H_hadamard, hadamard_coeff],

[H_cnot, cnot_coeff]]

# Lindblad dissipation operators
L1 = np.sqrt(gamma * (n_th + 1)) * sm1
L2 = np.sqrt(gamma * (n_th + 1)) * sm2
L3 = np.sqrt(gamma * n_th) * sm1.dag()
L4 = np.sqrt(gamma * n_th) * sm2.dag()

c_ops = [L1, L2, L3, L4]

# Initial state: |00>
psi_0 = tensor(basis(2, 1), basis(2, 1))

# Time list
tlist = np.linspace(0, np.pi, 500)

# Solve the Master equation
result = mesolve(H, psi_0, tlist, c_ops)
result

<Result
Solver: mesolve
Solver stats:
method: 'scipy zvode adams'
init time: 7.176399230957031e-05
preparation time: 0.0002262592315673828
run time: 0.028150558471679688
solver: 'Master Equation Evolution'
num_collapse: 4

Time interval: [0.0, 3.141592653589793] (500 steps)
Number of e_ops: 0
States saved.

>

We now plot the following quantities as a function of time:
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• The probability of finding the first qubit in state |1⟩.
• The probability of finding the second qubit in state |1⟩.
• The fidelity with the target Bell state |Φ+⟩.

# Bell state
bell_state = (tensor(basis(2, 0), basis(2, 0)) + tensor(basis(2, 1), basis(2, 1))).unit()

P0_1 = expect(sm1.dag() * sm1, result.states)
P0_2 = expect(sm2.dag() * sm2, result.states)
fid = [fidelity(bell_state, s) for s in result.states]

fig, ax = plt.subplots()

ax.plot(tlist, P0_1, label=r"$P_1^{(1)}$")
ax.plot(tlist, P0_2, label=r"$P_1^{(2)}$")
ax.plot(tlist, fid, label=r"Fidelity with $|\Phi^+\rangle$")
ax.set_xlabel(r"Time $t$")
ax.set_ylabel("Probability / Fidelity")
ax.set_ylim(0, 1)
ax.legend()

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close()
SVG("_tmp_fig.svg")
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12. The Jaynes–Cummings model: The Prove
of Field Quantization

At the crossroads of quantum optics and cavity QED, the Jaynes–Cummings (JC)
model stands out as the simplest non‑trivial arena in which a single photon mode interacts
with a single two‑level atom. Despite – or perhaps because of – its austerity, it captures phe-
nomena that range from vacuum Rabi oscillations to Schrödinger‑cat states. In what follows
I weave together the story of the model, its mathematics, and its experimental vindication,
culminating in Serge Haroche’s celebrated observation of field quantisation.

## The Jaynes–Cummings Hamiltonian: more than a toy

The JC Hamiltonian was born amid a heated 1960s debate over whether maser radiation had
to be quantised. Edward Jaynes and Frederick Cummings answered with a fully quantum
description whose predictions flatly contradicted semi‑classical intuition. In the rotating‑wave
approximation it reads

𝐻̂ = 𝜔𝑐 ̂𝑎† ̂𝑎 + 𝜔𝑞
2 𝜎̂𝑧 + 𝑔( ̂𝑎†𝜎̂− + ̂𝑎𝜎̂+).

where ̂𝑎 is the cavity field’s annihilation operator, 𝜎̂𝑧 is the atom’s Pauli operator, and 𝑔 is
the coupling strength. The first two terms describe the free evolution of cavity and atom,
while the last term couples them.

The JC model conserves the total excitation number 𝑁 = ̂𝑎† ̂𝑎 + 𝜎̂+𝜎̂−. This means that the
Hilbert space decomposes into sectors of fixed 𝑁 , each spanned by the states

|𝜓𝑛,1⟩ = |𝑛, 𝑒⟩ and |𝜓𝑛,2⟩ = |𝑛 + 1, 𝑔⟩

The JC Hamiltonian acts within each sector as a 2 × 2 matrix

𝐻̂𝑛 = (𝜔𝑐𝑛 + 𝜔𝑞
2 𝑔√𝑛 + 1

𝑔√𝑛 + 1 𝜔𝑐(𝑛 + 1) − 𝜔𝑞
2

) .

The eigenvalues of this matrix are
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𝐸𝑛,± = (𝑛 + 1
2)𝜔𝑐 ± 1

2Ω𝑛 (12.1)

where

Ω𝑛 = √(𝜔𝑐 − 𝜔𝑞)2 + 4𝑔2(𝑛 + 1) (12.2)

is the Rabi frequency.

### Collapse and revival in plain words

When the cavity field is prepared in a coherent state |𝛼⟩ and the atom in its ground state
|𝑔⟩, the atomic inversion can be written as a superposition of Rabi oscillations at frequencies
Ω𝑛, each weighted by the Poisson probability 𝑃𝑛 = 𝑒−|𝛼|2 |𝛼|2𝑛/𝑛!. The resulting interference
leads to an initial collapse of the oscillations, followed by a revival. The time evolution of the
atomic inversion is given by

⟨𝜎̂𝑧(𝑡)⟩ =
∞

∑
𝑛=0

𝑃𝑛 cos(2Ω𝑛 𝑡) .

## The open-system perspective

Real cavities leak, as well as electrons in the atom decay. To account for this, we can extend
the JC Hamiltonian with a Lindblad term that describes the interaction with the environment.
The master equation for the density operator 𝜌 reads

̇𝜌 = − 𝑖
ℏ [𝐻̂, 𝜌] + 𝜅 𝒟[ ̂𝑎]𝜌 + 𝛾 𝒟[𝜎̂−]𝜌,

with 𝒟[𝑂̂]𝜌 = 𝑂̂𝜌𝑂̂† − 1
2𝑂̂†𝑂̂, 𝜌 being the Lindblad dissipator. When 𝜅 and 𝛾 are small

compared to the Rabi frequency, the JC model is in the strong-coupling regime, where the
coherent oscillations are visible despite the dissipation. On the contrary, if 𝜅 or 𝛾 are large,
the oscillations are damped and eventually disappear, which corresponds to the weak-coupling
regime.

12.1. Simulating the JC model with QuTiP
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import numpy as np
import matplotlib.pyplot as plt
from qutip import *

# Parameters
wc = 5.0 # cavity
wq = 5.0 # atom (on resonance)
g = 0.1 # coupling
kappa = 0.01 # cavity decay
gamma = 0.00 # atomic T1 (suppressed)
N = 20 # Fock cutoff

# Operators
a = tensor(destroy(N), qeye(2))
sp = tensor(qeye(N), sigmap())
sm = tensor(qeye(N), sigmam())
sz = tensor(qeye(N), sigmaz())

H = wc * a.dag() * a + 0.5*wq * sz + g * (a.dag() * sm + a * sp)

# Dissipators
c_ops = [np.sqrt(kappa) * a, np.sqrt(gamma) * sm]

## Damped vacuum Rabi oscillations: The hello‑world of cavity QED

We now simulate the open system dynamics of the JC model, starting from the |𝜓(0)⟩ = |0, 𝑒⟩
state and watch excitation watch the atomic population in time. Theory predicts a cosine at
frequency 2𝑔, blurred by an exponential envelope 𝑒−𝜅𝑡/2.

�0 = tensor(basis(N, 0), basis(2, 0))
tlist = np.linspace(0, 200, 500)

result = mesolve(H, �0, tlist, c_ops, e_ops=[sp*sm])
P_e = result.expect[0]

fig, ax = plt.subplots()
ax.plot(tlist, P_e)
ax.set_xlabel("Time")
ax.set_ylabel(r"$P_{e}$")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
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plt.close(fig)
SVG("_tmp_fig.svg")

12.2. Demonstration of Electromagnetic Field Quantization: The
Haroche Experiment

A landmark experiment that unambiguously demonstrated the quantization of the electro-
magnetic field was conducted by Serge Haroche’s group in the 1990s (Brune et al. 1996).
The experiment used high-Q superconducting microwave cavities prepared in a coherent
state |𝛼⟩. Rydberg atoms were sent one at a time through the cavity, interacting disper-
sively with the quantized field. The population of the atomic excited state was measured as
a function of the atom-cavity interaction time.

12.2.1. Key Observations:

• The atomic population exhibited collapse and revival dynamics.
• These revivals correspond to the quantum interference between Rabi oscillations at

different frequencies Ω𝑛 = Ω0
√𝑛 + 1, each associated with a Fock state component |𝑛⟩

in the coherent state.
• A Fourier transform of the signal revealed multiple peaks, each corresponding to a

discrete photon number.
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This experiment cannot be explained using a classical field description. The observed
dynamics and frequency components are direct evidence of the discrete (quantized) nature
of the electromagnetic field. It remains one of the most compelling demonstrations of field
quantization in quantum optics.

### Preparing the coherent field

To simulate Haroche’s experiment, we need to prepare a coherent state |𝛼⟩ in the cavity and
a two-level atom in its ground state.

� = 2.0
�_fld = coherent(N, �)
�_atm = basis(2, 1)
�0 = tensor(�_fld, �_atm)

We can now use the mesolve function to evolve the system in time, while measuring the
atomic population.

tlist = np.linspace(0, 1000, 500)

out = mesolve(H, �0, tlist, c_ops, e_ops=[sp*sm])
pop = out.expect[0]

fig, ax = plt.subplots()
ax.plot(tlist, pop)
ax.set_xlabel("Time")
ax.set_ylabel(r"$\langle\hat\sigma_+ \hat\sigma_-\rangle$")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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### Fourier spectroscopy: The signature of Fock states

Each Fock state |𝑛⟩ drives the atom at Ω𝑛 = 2𝑔√𝑛 + 1, so the Fourier transform of ⟨𝜎̂𝑧(𝑡)⟩
must exhibit a comb at precisely those spacings.

from numpy.fft import fft, fftfreq

# We remove the exponential decay factor to make the peaks more visible
exp_factor = np.exp(-kappa * tlist / 2)
fft_sig = fft(pop / exp_factor)[0:len(pop)//2]

freq = fftfreq(len(pop), (tlist[1]-tlist[0]))[:len(pop)//2] * 2 * np.pi

fig, ax = plt.subplots()
ax.plot(freq, np.abs(fft_sig))
ax.vlines(2*g*np.sqrt(np.arange(1, 5)), 20, 100, color="black", linestyles="--")
ax.text(2*g*np.sqrt(1), 110, r"$2g\sqrt{n+1}$", fontsize=12, ha="left", va="bottom")
ax.set_yscale("log")
ax.set_xlabel("Frequency")
ax.set_ylabel("FFT")
ax.set_title("Spectral lines at $2g\sqrt{n+1}$")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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This plot worths the Nobel prize in 2012, as it shows the quantization of the electromagnetic
field. Indeed, the peaks at 2𝑔√𝑛 + 1 are a direct signature of the Fock states |𝑛⟩ in the
coherent state |𝛼⟩. Each peak corresponds to a different photon number, and their spacing
reflects the quantized nature of the electromagnetic field.
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Figure 12.1.: Experimental data from Haroche’s group showing the quantization of the elec-
tromagnetic field at different initial coherent state amplitudes (Brune et al.
1996).
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13. Resonance Fluorescence and the Mollow
Triplet

When a resonant laser drives a two‑level atom strongly, its resonance‑fluorescence spectrum
splits into three Lorentzian peaks: a central line at the laser frequency and two symmetric
sidebands. Predicted by B.R. Mollow in 1969 (Mollow (1969)) and first observed soon after,
this Mollow triplet is a hallmark of light–matter interaction in the strong‑drive (dressed‑state)
regime.

13.1. Physical picture

Consider a two‑level atom with energy separation 𝜔0 driven by a coherent laser at frequency
𝜔𝐿.

𝐻 = 𝜔0
2 𝜎̂𝑧 + Ω

2 (𝜎̂+𝑒−𝑖𝜔𝐿𝑡 + 𝜎̂−𝑒+𝑖𝜔𝐿𝑡).

Transforming to the laser rotating frame with 𝑈(𝑡) = exp[−𝑖𝜔𝐿𝑡
2 𝜎̂𝑧] removes the explicit time

dependence and shifts the zero of energy, yielding the textbook Hamiltonian used below

𝐻 = Δ
2 𝜎̂𝑧 + Ω

2 (𝜎̂+ + 𝜎̂−),

with detuning Δ = 𝜔0 − 𝜔𝐿 and on‑resonance Rabi frequency Ω = 𝜇𝐸0/ℏ. This semiclassical
model, combined with a Lindblad dissipator for spontaneous emission at rate 𝛾, fully captures
the triplet.

13.2. Analytic spectrum

In order to analyse the properties of the emitted light, we can compute the power spec-
trum of the scattered photons, defined as the Fourier transform of the correlation function
⟨ ̂𝐸(−)(𝑡) ̂𝐸(+)(0)⟩, where ̂𝐸(−) and ̂𝐸(+) are the negative and positive frequency parts of the
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electric field operator. In the rotating frame, these operators are related to the atom’s raising
and lowering operators 𝜎̂+ and 𝜎̂− as (Walls and Milburn 2008)

̂𝐸(−)(𝑡) ∝ 𝜎̂+(𝑡) and ̂𝐸(+)(𝑡) ∝ 𝜎̂−(𝑡) .

The power spectrum is then given by

𝑆(𝜔) = ∫
∞

−∞
𝑒𝑖𝜔𝑡⟨ ̂𝐸(−)(𝑡) ̂𝐸(+)(0)⟩𝑑𝑡 . (13.1)

Treating spontaneous emission at rate 𝛾 with a Lindblad term 𝐿̂ = √𝛾, 𝜎̂−, the power spec-
trum of scattered photons is (Walls and Milburn 2008)

𝑆(𝜔) ∝
𝛾
2

(𝜔 − 𝜔𝐿)2 + (𝛾
2 )2 + 3𝛾/8

(𝜔 − 𝜔𝐿 − Ω𝑅)2 + (3𝛾/4)2 + 3𝛾/8
(𝜔 − 𝜔𝐿 + Ω𝑅)2 + (3𝛾/4)2 .

with a central peak at 𝜔𝐿 and two sidebands at 𝜔𝐿 ± Ω𝑅, where Ω𝑅 =
√

Δ2 + Ω2 is the Rabi
frequency in the rotating frame.

13.3. Numerical spectrum in QuTiP

Below is a minimal QuTiP script that reproduces the triplet for a resonantly driven atom
(Δ = 0). The code computes the emission spectrum 𝑆(𝜔) in Equation 13.1 by using the
spectrum function to compute the Fourier transform of the correlation function of the emis-
sion operators.

import numpy as np
import matplotlib.pyplot as plt
from qutip import *

gamma = 1.0 # spontaneous emission rate
Omega = 5.0 * gamma # Rabi frequency (drive strength)
Delta = 0.0 # laser detuning

sm = sigmam()
sp = sigmap()
sz = sigmaz()

H = 0.5 * Delta * sz + 0.5 * Omega * (sp + sm)
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c_ops = [np.sqrt(gamma) * sm]

rho_ss = steadystate(H, c_ops)

wlist = np.linspace(-10 * gamma, 10 * gamma, 2000)
S = spectrum(H, wlist, c_ops, sp, sm)
S /= np.max(S)

plt.plot(wlist / gamma, S)
plt.xlabel(r"$(\omega - \omega_L)/\gamma$")
plt.ylabel(r"$S(\omega)$ (arb. units)")
plt.title("Mollow triplet")
plt.xlim(-10, 10)

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close()
SVG("_tmp_fig.svg")

Running the code with Ω = 5, 𝛾 reproduces the canonical spectrum: a narrow central line
and two broader sidebands at ±Ω.
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13.4. Photon statistics and antibunching

Given the emission spectrum, we may ask if the emitted light is classical or quantum. The
answer can be found in the photon statistics of the resonance fluorescence, which can be
probed by measuring the second‑order correlation function

𝑔(2)(𝜏) = ⟨ ̂𝐸(−)(0) ̂𝐸(−)(𝜏) ̂𝐸(+)(𝜏) ̂𝐸(+)(0)⟩
⟨ ̂𝐸(−) ̂𝐸(+)⟩2

∝ ⟨𝜎†(0) 𝜎†(𝜏) 𝜎−(𝜏) 𝜎−(0)⟩
⟨𝜎†𝜎−⟩2 . (13.2)

where ̂𝐸(+) and ̂𝐸(−) are the positive and negative frequency parts of the electric field operator,
and 𝜎†, 𝜎− are the raising and lowering operators of the two‑level atom. The quantity 𝑔(2)(𝜏)
measures the probability of detecting one photon at time 0 and another at time 𝜏 , normalised
by the square of the average number of photons emitted.

For classical light 𝑔(2)(0) ≥ 1 (photon bunching), whereas a single quantum emitter produces
antibunching with 𝑔(2)(0) = 0: once a photon is emitted, the atom is in its ground state
and cannot emit another immediately, so the probability of detecting two photons with zero
delay vanishes.

Under strong driving 𝑔(2)(𝜏) also displays damped Rabi oscillations at Ω𝑅—a direct
time‑domain analogue of the sidebands.

13.4.1. QuTiP example

tau_list = np.linspace(0, 10 / gamma, 400) # time delays

rho_ss = steadystate(H, c_ops)

corr = correlation_3op_1t(H, None, tau_list, c_ops, sp, sp*sm, sm)

n_ss = expect(sp * sm, rho_ss) # steady‑state population
g2 = np.real(corr) / (n_ss ** 2) # normalized

plt.plot(tau_list, g2)
plt.xlabel(r"$\tau$")
plt.ylabel(r"$g^{(2)}(\tau)$")
plt.title("Photon antibunching and Rabi oscillations")
plt.ylim(0, None)

# Show in Quarto
plt.savefig("_tmp_fig.svg")
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plt.close()
SVG("_tmp_fig.svg")

The plot shows 𝑔(2)(0) ≈ 0 (perfect antibunching in the ideal model). As 𝜏 increases the
function overshoots above 1 and undergoes damped oscillations at the Rabi frequency before
relaxing to the Poissonian value 𝑔(2)(∞) = 1.
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Figure 13.1.: The second order correlation function of the fluorescent light form a single
mercury ion in a trap versus delay time 𝜏 . The antibunching at 𝜏 = 0 is clearly
visible, as well as the Rabi oscillations at longer delays. Figure taken from
(Walther 1998).

13.5. Discussion

• Antibunching � unambiguously indicates a single quantum emitter or sub‑Poissonian
light.

• Rabi oscillations in 𝑔(2) � time‑domain fingerprint of the dressed‑state splitting that
generates the Mollow sidebands.

• Technological relevance � Resonance‑fluorescence photons combine single‑photon pu-
rity (antibunching) with high brightness and tunable frequency via the drive laser.
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14. The Emission Spectrum of the
Jaynes–Cummings Model

In Chapter 12, we introduced the Jaynes–Cummings (JC) model as a cornerstone of quantum
optics and cavity QED. Here we focus on the emission spectrum of the JC system, exploring
how the interaction between a single atom and a single cavity mode manifests in the frequency
domain. We will see how the spectral lines reflect the dressed–state structure of the system
and how dissipation modifies this picture.

14.1. Analytic Analysis

Under the condition of zero detuning Δ = 𝜔𝑐 − 𝜔𝑞 = 0, the Jaynes–Cummings dressed‐state
energies simplify. For the 𝑛-th excitation manifold, the two eigenvalues become:

𝐸𝑛,± = 𝑛 𝜔𝑐 ± 𝑔
√

𝑛 + 1 .

Here:

• 𝜔𝑐 is the cavity frequency.
• 𝑔 is the single‐photon coupling strength.
• 𝑛 = 0, 1, 2, … counts the total number of excitations shared between atom and field.

Whenever the system loses a photon, it jumps from the 𝑛-th manifold down to the (𝑛 − 1)-th.
Each of the two states at level 𝑛 (𝐸𝑛,+ or 𝐸𝑛,−) can decay into either of the two states at
level 𝑛 − 1. Concretely, the four allowed decay channels are:

• 𝐸𝑛,+ → 𝐸𝑛−1,+
• 𝐸𝑛,+ → 𝐸𝑛−1,−
• 𝐸𝑛,− → 𝐸𝑛−1,+
• 𝐸𝑛,− → 𝐸𝑛−1,−

Each channel corresponds to a distinct emission line in the spectrum, with its frequency given
by the energy difference between initial and final states.
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14.1.1. Case of Small Population

When the system is weakly excited, it rarely climbs above the first excitation manifold. Prac-
tically, only 𝑛 = 0 (the vacuum) and 𝑛 = 1 are occupied. In this regime:

1. Manifolds populated: Only 𝑛 = 0 and 𝑛 = 1.

2. Transitions: From 𝐸1,+ and 𝐸1,− down to the vacuum at 𝐸0 = 0.

3. Observed lines: Exactly two, located at:

𝜔 = 𝜔𝑐 ± 𝑔

These two peaks form the well‐known vacuum Rabi splitting. As soon as you start populat-
ing higher manifolds, the spectrum becomes richer, with more lines appearing at frequencies
𝜔𝑐 ± 𝑔(√𝑛 + 1 ± √𝑛) for 𝑛 = 0, 1, 2, ….

14.2. Numerical simulation with QuTiP

We now simulate the emission spectrum of the JC model using QuTiP, focusing on the weak
and strong coupling regimes. We will compute the emission spectrum 𝑆(𝜔) of the cavity field
using the spectrum function. We first define the system and its parameters.

import numpy as np
import matplotlib.pyplot as plt
from qutip import *

# Parameters
wc = 5.0 # cavity
wq = 5.0 # atom (on resonance)
g = 0.1 # coupling
kappa = 0.03 # cavity decay
gamma = 0.00 # atomic T1 (suppressed)
n_th = 0.01 # thermal photons of the environment
N = 20 # Fock cutoff

# Operators
a = tensor(destroy(N), qeye(2))
sp = tensor(qeye(N), sigmap())
sm = tensor(qeye(N), sigmam())
sz = tensor(qeye(N), sigmaz())
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H = wc * a.dag() * a + 0.5*wq * sz + g * (a.dag() * sm + a * sp)

# Dissipators
c_ops = [np.sqrt(kappa * (n_th + 1)) * a, np.sqrt(gamma * (n_th + 1)) * sm,

np.sqrt(kappa * n_th) * a.dag(), np.sqrt(gamma * n_th) * sp]

And we finally compute the emission spectrum.

w_list = np.linspace(wc-6*g, wc+6*g, 1000)

spec = spectrum(H, w_list, c_ops, a.dag(), a)

fig, ax = plt.subplots()

ax.plot(w_list, spec.real)
ax.set_xlabel("Frequency (MHz)")
ax.set_ylabel(r"$S(\omega)$ (arb. units)")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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A. The quantum harmonic oscillator

As an example, here we consider the quantum harmonic oscillator. Classically, the harmonic
oscillator is defined as a system subject to the force F = −𝑘r, where 𝑘 is the elastic constant.
In other words, the force is proportional to the displacement from a stable point (in this case
the origin).

Following the relation F = −∇𝑉 (r), we can say that the corresponding potential is 𝑉 (r) =
𝑘/2 r2. The solution of the Schrodinger equation

𝑖ℏ 𝜕
𝜕𝑡Ψ(r, 𝑡) = − ℏ2

2𝑚∇2Ψ(r, 𝑡) + 𝑉 (r)Ψ(r, 𝑡) ,

where ℏ is the reduced Planck constant, 𝑚 is the mass of the particle, and ∇2 is the Laplacian
operator, gives us the eigenstates of the system. Considering only the one-dimensional case,
we obtain the following eigenstates for the quantum harmonic oscillator:

𝜓𝑛(𝑥) = 1√
2𝑛𝑛!

(𝑚𝜔
𝜋ℏ )

1/4
𝑒− 𝑚𝜔𝑥2

2ℏ 𝐻𝑛 (√𝑚𝜔
ℏ 𝑥) , (A.1)

where 𝜔 = √𝑘/𝑚 is the resonance frequency of the oscillator and 𝐻𝑛 is the 𝑛-th Hermite
polynomial.

A useful way to describe the quantum harmonic oscillator is by using the ladder operators

̂𝑎 = √𝑚𝜔
2ℏ ( ̂𝑥 + 𝑖 1

𝑚𝜔 ̂𝑝) (A.2)

̂𝑎† = √𝑚𝜔
2ℏ ( ̂𝑥 − 𝑖 1

𝑚𝜔 ̂𝑝) , (A.3)

note that the position ̂𝑥 and conjugate momentum ̂𝑝 are operators too. If we now write the
eigenstates in Equation 6.1 in the bra-ket notation (𝜓𝑛 → |𝑛⟩), the ladder operators allow us
to move from one eigenstate to the next or previous one:
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̂𝑎 |𝑛⟩ = √𝑛 |𝑛 − 1⟩ (A.4)
̂𝑎† |𝑛⟩ =

√
𝑛 + 1 |𝑛 + 1⟩ , (A.5)

and it is straightforward to recognize the creation ( ̂𝑎†) and annihilation ( ̂𝑎) operators. In this
framework the system Hamiltonian of the quantum harmonic oscillator becomes

𝐻̂ = ℏ𝜔 ( ̂𝑎† ̂𝑎 + 1
2) .

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import eval_hermite, factorial

# Physical parameters
m = 1.0
k = 1.0
w = np.sqrt(k/m)
alpha = -np.sqrt(2) # coherent‐state parameter

# Grid
bounds = 6.0
x = np.linspace(-bounds, bounds, 1000)

# n-th eigenfunction of the HO (hbar=1)
def psi(n, x):

Hn = eval_hermite(n, np.sqrt(m*w) * x)
norm = (m*w/np.pi)**0.25 / np.sqrt(2**n * factorial(n))
return norm * Hn * np.exp(-m*w*x**2/2)

# Build the first six eigenstates and energies
psi_n = [psi(n, x) for n in range(6)]
E_n = [(n + 0.5) * w for n in range(6)]

# Coherent-state wavefunction (real alpha � no overall phase)
psi_coh = (m*w/np.pi)**0.25 * np.exp(- (x - np.sqrt(2)*alpha)**2 / 2)

# Plotting
fig, ax = plt.subplots()

# 1) potential
ax.plot(x, 0.5*k*x**2, 'k--', lw=2, label=r'$V(x)=\tfrac12 k x^2$')
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# 2) coherent state
ax.fill_between(x, psi_coh, color='gray', alpha=0.5)
ax.plot(x, psi_coh, color='gray', lw=2, label='Coherent state')

# 3) eigenstates offset by E_n
lines = []
for n in range(6):

y = psi_n[n] + E_n[n]
line, = ax.plot(x, y, lw=2, label=fr'$|{n}\rangle$')
lines.append(line)

# Cosmetics
ax.set_ylim(0, 7)
ax.set_xlabel(r'$x$')

# State labels on the right
for n, line in enumerate(lines):

ax.text(4.5, E_n[n] + 0.2, rf'$|{n}\rangle$', color=line.get_color())

ax.text(-3.5, 6.5, r"$V(x)$")
ax.text(-3, 0.9, r"$\ket{\alpha}$", color="grey")
ax.annotate("", xy=(-5.5,3.5), xytext=(-5.5,2.5), arrowprops=dict(arrowstyle="<->"))
ax.text(-5.4, 3, r"$\hbar \omega$", ha="left", va="center")

plt.show()
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Figure A.1.: First eigenstates of one-dimensional the quantum harmonic oscillator, each of
them vertically shifted by the corresponding eigenvalue. The grey-filled curve
corresponds to a coherent state with 𝛼 = −

√
2. The used parameter are 𝑚 = 1,

𝜔 = 1, and ℏ = 1.

It is worth introducing the coherent state |𝛼⟩ of the harmonic oscillator, defined as the
eigenstate of the destroy operator, with eigenvalue 𝛼, in other words, ̂𝑎 |𝛼⟩ = 𝛼 |𝛼⟩. It can
be expressed analytically in terms of the eigenstates of the quantum harmonic oscillator

|𝛼⟩ = 𝑒− 1
2 |𝛼|2

∞
∑
𝑛=0

𝛼𝑛
√

𝑛!
|𝑛⟩ ,

and it can be seen as the most classic-like state since it has the minimum uncertainty Δ𝑥Δ𝑝 =
ℏ/2.

Figure A.1 shows the first eigenstates of the quantum harmonic oscillator, each of them
vertically shifted by the respective energy, while the grey-filled curve is a coherent state with
𝛼 = −

√
2. The black dashed curve is the potential, choosing 𝑘 = 1, 𝑚 = 1, and ℏ = 1. It is

worth noting that also the groundstate |0⟩ has a nonzero energy (𝐸0 = ℏ𝜔/2).
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B. From classical densities to the Wigner
function

So far we have:

• a probability density 𝜌(𝑥, 𝑝, 𝑡) for classical ensembles, obeying Liouville’s equation;
• a wavefunction 𝜓(𝑥, 𝑡) or a density operator ̂𝜌 for quantum systems, obeying the

Schrödinger/von Neumann equations.

The Wigner function builds a bridge between these two pictures.
It lives in phase space like 𝜌(𝑥, 𝑝), yet it is derived from ̂𝜌 and keeps all quantum informa-
tion.

B.1. Definition

For a one–dimensional system the Wigner function is

𝑊(𝑥, 𝑝, 𝑡) = 1
2𝜋ℏ ∫

+∞

−∞
𝑑𝑦 𝑒−𝑖𝑝𝑦/ℏ ⟨𝑥 + 𝑦

2 ∣ ̂𝜌(𝑡)∣𝑥 − 𝑦
2⟩. (B.1)

A quick checklist:

• 𝑥 and 𝑝 are simultaneous variables (even though they do not commute quantum me-
chanically).

• 𝑊 is real, but it can take negative values – an unmistakable quantum signature.
• The normalisation matches that of 𝜌: ∫ 𝑑𝑥 𝑑𝑝 𝑊(𝑥, 𝑝, 𝑡) = 1.

Classical � Quantum analogy

• 𝜌(𝑥, 𝑝, 𝑡) is always non-negative.
• 𝑊(𝑥, 𝑝, 𝑡) can be negative, revealing quantum interference.
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B.2. Marginals and expectation values

Despite possible negativity, 𝑊 returns the correct probability densities for position and
momentum:

∫
+∞

−∞
𝑑𝑝 𝑊(𝑥, 𝑝, 𝑡) = ⟨𝑥| ̂𝜌|𝑥⟩ = |𝜓(𝑥, 𝑡)|2,

∫
+∞

−∞
𝑑𝑥 𝑊(𝑥, 𝑝, 𝑡) = ⟨𝑝| ̂𝜌|𝑝⟩.

Expectation values of symmetrised operators follow the phase-space average rule

⟨ ̂𝐴⟩ = ∫ 𝑑𝑥 𝑑𝑝 𝐴W(𝑥, 𝑝) 𝑊(𝑥, 𝑝, 𝑡),

where 𝐴W is the Weyl symbol of ̂𝐴 (the phase-space version of the operator).

B.3. Properties worth remembering

Property Classical 𝜌 Quantum 𝑊
Real � �
Non-negative � � possible negativity
Normalised � �
Obeys continuity / Liouville � �, plus ℏ-corrections
Supports interference fringes � �

B.4. Example : Gaussian wavepacket

For a minimum-uncertainty Gaussian wavepacket

𝜓(𝑥) = 1
(2𝜋𝜎2𝑥)1/4 exp[−(𝑥 − 𝑥0)2

4𝜎2𝑥
+ 𝑖 𝑝0(𝑥 − 𝑥0)/ℏ],

the Wigner function is also Gaussian and everywhere positive:
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𝑊(𝑥, 𝑝) = 1
𝜋ℏ exp[−(𝑥 − 𝑥0)2

2𝜎2𝑥
− 2𝜎2

𝑥
ℏ2 (𝑝 − 𝑝0)2].

Negativity appears only when the state contains quantum interference, for example in super-
positions of spatially separated Gaussians.

B.5. Why the Wigner function matters

• It lets us visualise quantum states in the familiar (𝑥, 𝑝) plane.

• Many semiclassical techniques expand around 𝑊 and truncate the series.

• In quantum optics the Wigner function of an electromagnetic mode can be measured
with homodyne tomography (see later lectures).

Using 𝑊(𝑥, 𝑝, 𝑡) we now have a complete trio:

1. Classical ensemble — 𝜌(𝑥, 𝑝, 𝑡) (Liouville).

2. Quantum wavefunction/density operator — 𝜓(𝑥, 𝑡) / ̂𝜌(𝑡) (Schrödinger/von
Neumann).

3. Quantum phase-space picture — 𝑊(𝑥, 𝑝, 𝑡) (Moyal evolution).

B.6. Example: the nonlinear oscillator

In Chapter 7 we solved the Liouville equation for a classical nonlinear oscillator with Hamil-
tonian

𝐻 = 𝑝2

2𝑚 + 1
2𝑘𝑥2 + 𝑔𝑥4. (B.2)

Moreover, in Chapter 10 we solved the Schrödinger equation using QuTiP for aq simple
harmonic oscillator. We now combine these two approaches to study the quantum nonlin-
ear oscillator with Hamiltonian Equation B.2, but with the quantum operator ̂𝑥 and ̂𝑝
instead of the classical variables 𝑥 and 𝑝.
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import numpy as np
from qutip import *

N = 120
m = 0.5 # Mass of the particle
k = 2.0 # Spring constant
G = 0.15 # Nonlinear constant
w = np.sqrt(k/m) # Angular frequency

a = destroy(N)

x = np.sqrt(m * w / 2) * (a + a.dag())
p = 1j * np.sqrt(m * w / 2) * (a.dag() - a)

H = p**2 / (2 * m) + k * x**2 / 2 + G * x**4

# Initial state: coherent state
alpha = np.sqrt(1 / (2 * m * w)) * 1 + 1j * np.sqrt(m * w / 2) * 0.1
psi_0 = coherent(N, alpha)

tlist = np.linspace(0, 2, 500)
result = sesolve(H, psi_0, tlist)
result

<Result
Solver: sesolve
Solver stats:
method: 'scipy zvode adams'
init time: 0.00020766258239746094
preparation time: 0.00016641616821289062
run time: 0.9459991455078125
solver: 'Schrodinger Evolution'

Time interval: [0.0, 2.0] (500 steps)
Number of e_ops: 0
States saved.

>

The Wigner function can be computed from the resulting state using QuTiP’s wigner func-
tion. Let’s plot the Wigner function at the final time step:
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fig, ax = plt.subplots()

img = ax.pcolormesh(x_list, px_list, wigner(result.states[-1], x_list, px_list),
shading="gouraud", rasterized=True,
vmin=-0.3, vmax=0.3, cmap="PuOr")

ax.set_xlabel("Position $x$")
ax.set_ylabel("Momentum $p_x$")

# Show in Quarto
plt.savefig("_tmp_fig.svg")
plt.close(fig)
SVG("_tmp_fig.svg")
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